Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
Add more filters

Country/Region as subject
Publication year range
1.
EMBO Rep ; 23(9): e53221, 2022 09 05.
Article in English | MEDLINE | ID: mdl-35848459

ABSTRACT

The effect of radiation therapy on tumor vasculature has long been a subject of debate. Increased oxygenation and perfusion have been documented during radiation therapy. Conversely, apoptosis of endothelial cells in irradiated tumors has been proposed as a major contributor to tumor control. To examine these contradictions, we use multiphoton microscopy in two murine tumor models: MC38, a highly vascularized, and B16F10, a moderately vascularized model, grown in transgenic mice with tdTomato-labeled endothelium before and after a single (15 Gy) or fractionated (5 × 3 Gy) dose of radiation. Unexpectedly, even these high doses lead to little structural change of the perfused vasculature. Conversely, non-perfused vessels and blind ends are substantially impaired after radiation accompanied by apoptosis and reduced proliferation of their endothelium. RNAseq analysis of tumor endothelial cells confirms the modification of gene expression in apoptotic and cell cycle regulation pathways after irradiation. Therefore, we conclude that apoptosis of tumor endothelial cells after radiation does not impair vascular structure.


Subject(s)
Endothelial Cells , Neoplasms , Animals , Apoptosis , Endothelial Cells/metabolism , Endothelium/metabolism , Mice , Mice, Transgenic , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/radiotherapy , Radiation, Ionizing
2.
Int J Mol Sci ; 24(5)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36902352

ABSTRACT

Radiotherapy (ionising radiation; IR) is utilised in the treatment of ~50% of all human cancers, and where the therapeutic effect is largely achieved through DNA damage induction. In particular, complex DNA damage (CDD) containing two or more lesions within one to two helical turns of the DNA is a signature of IR and contributes significantly to the cell killing effects due to the difficult nature of its repair by the cellular DNA repair machinery. The levels and complexity of CDD increase with increasing ionisation density (linear energy transfer, LET) of the IR, such that photon (X-ray) radiotherapy is deemed low-LET whereas some particle ions (such as carbon ions) are high-LET radiotherapy. Despite this knowledge, there are challenges in the detection and quantitative measurement of IR-induced CDD in cells and tissues. Furthermore, there are biological uncertainties with the specific DNA repair proteins and pathways, including components of DNA single and double strand break mechanisms, that are engaged in CDD repair, which very much depends on the radiation type and associated LET. However, there are promising signs that advancements are being made in these areas and which will enhance our understanding of the cellular response to CDD induced by IR. There is also evidence that targeting CDD repair, particularly through inhibitors against selected DNA repair enzymes, can exacerbate the impact of higher LET, which could be explored further in a translational context.


Subject(s)
DNA Damage , DNA Repair , Humans , Radiation, Ionizing , DNA Repair Enzymes/genetics , DNA
3.
Br J Cancer ; 124(11): 1809-1819, 2021 05.
Article in English | MEDLINE | ID: mdl-33742147

ABSTRACT

BACKGROUND: The radiosensitising effect of the poly(ADP-ribose) polymerase inhibitor olaparib on tumours has been reported. However, its effect on normal tissues in combination with radiation has not been well studied. Herein, we investigated the therapeutic index of olaparib combined with hemithoracic radiation in a urethane-induced mouse lung cancer model. METHODS: To assess tolerability, A/J mice were treated with olaparib plus whole thorax radiation (13 Gy), body weight changes were monitored and normal tissue effects were assessed by histology. In anti-tumour (intervention) studies, A/J mice were injected with urethane to induce lung tumours, and were then treated with olaparib alone, left thorax radiation alone or the combination of olaparib plus left thorax radiation at 8 weeks (early intervention) or 18 weeks (late intervention) after urethane injection. Anti-tumour efficacy and normal tissue effects were assessed by visual inspection, magnetic resonance imaging and histology. RESULTS: Enhanced body weight loss and oesophageal toxicity were observed when olaparib was combined with whole thorax but not hemithorax radiation. In both the early and late intervention studies, olaparib increased the anti-tumour effects of hemithoracic irradiation without increasing lung toxicity. CONCLUSIONS: The addition of olaparib increased the therapeutic index of hemithoracic radiation in a mouse model of lung cancer.


Subject(s)
Lung Neoplasms/drug therapy , Lung Neoplasms/radiotherapy , Phthalazines/therapeutic use , Piperazines/therapeutic use , Animals , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/radiotherapy , Disease Models, Animal , Female , Lung Neoplasms/pathology , Mice , Phthalazines/pharmacology , Piperazines/pharmacology , Radiation-Sensitizing Agents/therapeutic use , Therapeutic Index , Thorax/radiation effects , Treatment Outcome
4.
Proc Natl Acad Sci U S A ; 115(33): E7672-E7679, 2018 08 14.
Article in English | MEDLINE | ID: mdl-30061396

ABSTRACT

Long-distance exchange of copper objects during the Archaic Period (ca. 8000-3000 cal B.P.) is a bellwether of emergent social complexity in the Eastern Woodlands. Originating from the Great Lakes, the Canadian Maritimes, and the Appalachian Mountains, Archaic-age copper is found in significant amounts as far south as Tennessee and in isolated pockets at major trade centers in Louisiana but is absent from most of the southeastern United States. Here we report the discovery of a copper band found with the cremated remains of at least seven individuals buried in the direct center of a Late Archaic shell ring located in coastal Georgia. Late Archaic shell rings are massive circular middens thought to be constructed, in part, during large-scale ritual gatherings and feasting events. The exotic copper and cremated remains are unique in coastal South Carolina and Georgia where Archaic-age cremations are conspicuously absent and no other Archaic copper objects have been reported. Elemental data produced through laser ablation inductively coupled plasma mass spectrometry shows the copper originated from the Great Lakes, effectively extending Archaic copper exchange almost 1,000 km beyond its traditional boundaries. Similarities in mortuary practices and the presence of copper originating from the Great Lakes reveal the presence of long-distance exchange relations spanning vast portions of the eastern United States and suggest an unexpected level of societal complexity at shell ring localities. These findings are consistent with the hypothesis that elite actors solidified their positions through ritual gatherings and the long-distance exchange of exotic objects during the Archaic.


Subject(s)
Archaeology , Copper , Cremation , Georgia , Humans , South Carolina
5.
Proc Natl Acad Sci U S A ; 115(25): 6335-6340, 2018 06 19.
Article in English | MEDLINE | ID: mdl-29871946

ABSTRACT

In the field of X-ray microcomputed tomography (µCT) there is a growing need to reduce acquisition times at high spatial resolution (approximate micrometers) to facilitate in vivo and high-throughput operations. The state of the art represented by synchrotron light sources is not practical for certain applications, and therefore the development of high-brightness laboratory-scale sources is crucial. We present here imaging of a fixed embryonic mouse sample using a compact laser-plasma-based X-ray light source and compare the results to images obtained using a commercial X-ray µCT scanner. The radiation is generated by the betatron motion of electrons inside a dilute and transient plasma, which circumvents the flux limitations imposed by the solid or liquid anodes used in conventional electron-impact X-ray tubes. This X-ray source is pulsed (duration <30 fs), bright (>1010 photons per pulse), small (diameter <1 µm), and has a critical energy >15 keV. Stable X-ray performance enabled tomographic imaging of equivalent quality to that of the µCT scanner, an important confirmation of the suitability of the laser-driven source for applications. The X-ray flux achievable with this approach scales with the laser repetition rate without compromising the source size, which will allow the recording of high-resolution µCT scans in minutes.


Subject(s)
Radiography/methods , X-Ray Microtomography/methods , Animals , Equipment Design , Lasers , Light , Mice/embryology , Particle Accelerators , Photons , Scattering, Radiation , X-Rays
6.
Biochem Biophys Res Commun ; 531(4): 535-542, 2020 10 22.
Article in English | MEDLINE | ID: mdl-32807492

ABSTRACT

INTRODUCTION: Pre-clinical testing of small molecules for therapeutic development across many pathologies relies on the use of in-vitro and in-vivo models. When designed and implemented well, these models serve to predict the clinical outcome as well as the toxicity of the evaluated therapies. The two-dimensional (2D) reductionist approach where cells are incubated in a mono-layer on hard plastic microtiter plates is relatively inexpensive but not physiologically relevant. In contrast, well developed and applied three dimensional (3D) in vitro models could be employed to bridge the gap between 2D in vitro primary screening and expensive in vivo rodent models by incorporating key features of the tissue microenvironment to explore differentiation, cortical development, cancers and various neuronal dysfunctions. These features include an extracellular matrix, co-culture, tension and perfusion and could replace several hundred rodents in the drug screening validation cascade. METHODS: Human neural progenitor cells from middle brain (ReN VM, Merck Millipore, UK) were expanded as instructed by the supplier (Merck Millipore, UK), and then seeded in 96-well low-attachment plates (Corning, UK) to form multicellular spheroids followed by adding a Matrigel layer to mimic extracellular matrix around neural stem cell niche. ReN VM cells were then differentiated via EGF and bFGF deprivation for 7 days and were imaged at day 7. Radiotherapy was mimicked via gamma-radiation at 2Gy in the absence and presence of selected DYRK1A inhibitors Harmine, INDY and Leucettine 41 (L41). Cell viability was measured by AlamarBlue assay. Immunofluorescence staining was used to assess cell pluripotency marker SOX2 and differentiation marker GFAP. RESULTS: After 7 days of differentiation, neuron early differentiation marker (GFAP, red) started to be expressed among the cells expressing neural stem cell marker SOX2 (green). Radiation treatment caused significant morphology change including the reduced viability of the spheroids. These spheroids also revealed sensitizing potential of DYRK1A inhibitors tested in this study, including Harmine, INDY and L41. DISCUSSION & CONCLUSIONS: Combined with the benefit of greatly reducing the issues associated with in vivo rodent models, including reducing numbers of animals used in a drug screening cascade, cost, ethics, and potential animal welfare burden, we feel the well-developed and applied 3D neural spheroid model presented in this study will provide a crucial tool to evaluate combinatorial therapies, optimal drug concentrations and treatment dosages.


Subject(s)
Drug Evaluation, Preclinical/methods , Neural Stem Cells/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Spheroids, Cellular/drug effects , Cell Line , Collagen , Dioxoles/pharmacology , Drug Combinations , Extracellular Matrix , Gamma Rays , Harmine/pharmacology , Humans , Imidazoles/pharmacology , Laminin , Neural Stem Cells/radiation effects , Neurites/drug effects , Proteoglycans , Radiation-Sensitizing Agents/pharmacology , SOXB1 Transcription Factors/metabolism , Spheroids, Cellular/radiation effects , Dyrk Kinases
7.
Development ; 144(19): 3440-3453, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28893948

ABSTRACT

Migration of stem cells underpins the physiology of metazoan animals. For tissues to be maintained, stem cells and their progeny must migrate and differentiate in the correct positions. This need is even more acute after tissue damage by wounding or pathogenic infection. Inappropriate migration also underpins metastasis. Despite this, few mechanistic studies address stem cell migration during repair or homeostasis in adult tissues. Here, we present a shielded X-ray irradiation assay that allows us to follow stem cell migration in planarians. We demonstrate the use of this system to study the molecular control of stem cell migration and show that snail-1, snail-2 and zeb-1 EMT transcription factor homologs are necessary for cell migration to wound sites and for the establishment of migratory cell morphology. We also observed that stem cells undergo homeostatic migration to anterior regions that lack local stem cells, in the absence of injury, maintaining tissue homeostasis. This requires the polarity determinant notum Our work establishes planarians as a suitable model for further in-depth study of the processes controlling stem cell migration in vivo.


Subject(s)
Adult Stem Cells/cytology , Cell Movement , Epithelial-Mesenchymal Transition , Planarians/cytology , Planarians/metabolism , Pluripotent Stem Cells/cytology , Transcription Factors/metabolism , Adult Stem Cells/metabolism , Adult Stem Cells/radiation effects , Animals , Cell Lineage/radiation effects , Cell Movement/radiation effects , Cell Shape/radiation effects , Conserved Sequence , Epidermal Cells , Epithelial-Mesenchymal Transition/radiation effects , Integrin beta Chains/metabolism , Matrix Metalloproteinases/metabolism , Planarians/genetics , Pluripotent Stem Cells/radiation effects , Snail Family Transcription Factors/metabolism , X-Rays
8.
J Toxicol Environ Health B Crit Rev ; 22(7-8): 244-263, 2019.
Article in English | MEDLINE | ID: mdl-31637961

ABSTRACT

Since the inception of the International Agency for Research on Cancer (IARC) in the early 1970s, the IARC Monographs Programme has evaluated more than 1000 agents with respect to carcinogenic hazard; of these, up to and including Volume 119 of the IARC Monographs, 120 agents met the criteria for classification as carcinogenic to humans (Group 1). Volume 100 of the IARC Monographs provided a review and update of Group 1 carcinogens. These agents were divided into six broad categories: (I) pharmaceuticals; (II) biological agents; (III) arsenic, metals, fibers, and dusts; (IV) radiation; (V) personal habits and indoor combustions; and (VI) chemical agents and related occupations. Data on biological mechanisms of action (MOA) were extracted from the Monographs to assemble a database on the basis of ten key characteristics attributed to human carcinogens. After some grouping of similar agents, the characteristic profiles were examined for 86 Group 1 agents for which mechanistic information was available in the IARC Monographs up to and including Volume 106, based upon data derived from human in vivo, human in vitro, animal in vivo, and animal in vitro studies. The most prevalent key characteristic was "is genotoxic", followed by "alters cell proliferation, cell death, or nutrient supply" and "induces oxidative stress". Most agents exhibited several of the ten key characteristics, with an average of four characteristics per agent, a finding consistent with the notion that cancer development in humans involves multiple pathways. Information on the key characteristics was often available from multiple sources, with many agents demonstrating concordance between human and animal sources, particularly with respect to genotoxicity. Although a detailed comparison of the characteristics of different types of agents was not attempted here, the overall characteristic profiles for pharmaceutical agents and for chemical agents and related occupations appeared similar. Further in-depth analyses of this rich database of characteristics of human carcinogens are expected to provide additional insights into the MOA of human cancer development.


Subject(s)
Carcinogens/toxicity , Mutagens/toxicity , Neoplasms/chemically induced , Animals , Carcinogenesis/chemically induced , Carcinogenicity Tests , Humans , International Agencies , Mutagenesis , Neoplasms/pathology
9.
Cells Tissues Organs ; 205(5-6): 293-302, 2018.
Article in English | MEDLINE | ID: mdl-30673660

ABSTRACT

Human embryology is a core subject for medicine and current research. While animal models of development now have significant online resources available, the vast majority of human embryonic material is locked up in historic collections. When accessed today, these collections are still contributing to our understanding of human development. This paper describes two online resources for studying human development that are unlocking these invaluable collections and providing related human developmental resources. The first of these is the online Embryology website (http://tiny.cc/Embryo) that links the human developmental timeline to historic and current research findings. Secondly is the Digital Embryology Consortium (https://human-embryology.org), an international research partnership to digitise, preserve, and make the major embryology histological collections available for researchers. By making this histological material more widely available to researchers with new methods of analysis, a better understanding of human development can be reached. This also opens the opportunity for new 3D reconstruction and virtual reality representation of these embryos.


Subject(s)
Embryo, Mammalian/embryology , Congenital Abnormalities/embryology , Congenital Abnormalities/pathology , Embryo, Mammalian/ultrastructure , Embryology/education , Embryology/methods , Embryonic Development , Humans , Imaging, Three-Dimensional , Internet , Magnetic Resonance Imaging , Microscopy, Electron , Optical Imaging
10.
Radiat Environ Biophys ; 54(2): 195-206, 2015 May.
Article in English | MEDLINE | ID: mdl-25649482

ABSTRACT

mFISH analysis of chromosome aberration profiles of 47 and 144 h lymphocyte cultures following exposure to 193 mGy α-particle radiation confirmed that the frequency of stable aberrant cells and stable cells carrying translocations remains constant through repeated cell divisions. Age-specific rates and in vitro dose-response curves were used to derive expected translocation yields in nine workers from the Mayak nuclear facility in Russia. Five had external exposure to γ-radiation, two of whom also had exposure to neutrons, and four had external exposure to γ-radiation and internal exposure to α-particle radiation from incorporated plutonium. Doubts over the appropriateness of the dose response used to estimate translocations from the neutron component made interpretation difficult in two of the workers with external exposure, but the other three had translocation yields broadly in line with expectations. Three of the four plutonium workers had translocation yields in line with expectations, thus supporting the application of the recently derived in vitro α-particle dose response for translocations in stable cells. Overall this report demonstrates that with adequate reference in vitro dose-response curves, translocation yield has the potential to be a useful tool in the validation of red bone marrow doses resulting from mixed exposure to external and internal radiation.


Subject(s)
Alpha Particles/adverse effects , Chromosome Aberrations/radiation effects , Gamma Rays/adverse effects , Occupational Exposure/adverse effects , Plutonium/adverse effects , Radiation Exposure/adverse effects , Adult , Aged , Aged, 80 and over , Humans , Male , Middle Aged , Nuclear Reactors , Young Adult
11.
Radiat Environ Biophys ; 54(4): 423-31, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26242374

ABSTRACT

Core-inner-valence ionization of high-Z nanoparticle atomic clusters can de-excite electrons through various interatomic de-excitation processes, thereby leading to the ionization of both directly exposed atoms and adjacent neutral atoms within the nanoparticles, and to an enhancement in photon-electron emission, which is termed the nanoradiator effect. To investigate the nanoradiator-mediated dose enhancement in the radio-sensitizing of high-Z nanoparticles, the production of reactive oxygen species (ROS) was measured in a gadolinium oxide nanoparticle (Gd-oxide NP) solution under core-inner-valence excitation of Gd with either 50 keV monochromatic synchrotron X-rays or 45 MeV protons. This measurement was compared with either a radiation-only control or a gadolinium-chelate magnetic resonance imaging contrast agent solution containing equal amounts of gadolinium as the separate atomic species in which Gd-Gd interatomic de-excitations are absent. Ionization excitations followed by ROS measurements were performed on nanoparticle-loaded cells or aqueous solutions. Both photoexcitation and proton impact produced a dose-dependent enhancement in the production of ROS by a range of factors from 1.6 to 1.94 compared with the radiation-only control. Enhanced production of ROS, by a factor of 1.83, was observed from Gd-oxide NP atomic clusters compared with the Gd-chelate molecule, with a Gd concentration of 48 µg/mL in the core-level photon excitation, or by a factor of 1.82 under a Gd concentration of 12 µg/mL for the proton impact at 10 Gy (p < 0.02). The enhanced production of ROS in the irradiated nanoparticles suggests the potential for additional therapeutic dose enhancements in radiation treatment via the potent Gd-Gd interatomic de-excitation-driven nanoradiator effect.


Subject(s)
Gadolinium/chemistry , Gadolinium/radiation effects , Metal Nanoparticles/chemistry , Metal Nanoparticles/radiation effects , Reactive Oxygen Species/chemical synthesis , Reactive Oxygen Species/radiation effects , Contrast Media/chemistry , Contrast Media/radiation effects , Dose-Response Relationship, Radiation , Linear Energy Transfer/radiation effects , Materials Testing , Metal Nanoparticles/ultrastructure , Protons , Radiation Dosage , Scattering, Radiation , X-Rays
12.
J Mater Sci Mater Med ; 26(8): 218, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26223792

ABSTRACT

Radiopaque and fluorescent embolic particles have been synthesized and characterised to match the size of vasculature found in tumours to ensure effective occlusion of the vessels. A literature search showed that the majority of vessels surrounding a tumour were less than 50 µm and therefore polydispersed polystyrene particles with a peak size of 50 µm have been synthesised. The embolic particles contain 5-8 nm amorphous tantalum oxide nanoparticles which provide X-ray contrast. Embolic particles containing up to 9.4 wt% tantalum oxide were prepared and showed significant contrast compared to the undoped polystyrene particles. The X-ray contrast of the embolic particles was shown to be linear (R(2) = 0.9) with respect to the concentration of incorporated tantalum nanoparticles. A model was developed which showed that seventy-five 50 µm embolic particles containing 10% tantalum oxide could provide the same contrast as 5 cm of bone. Therefore, the synthesized particles would provide sufficient X-ray contrast to enable visualisation within a tumour.


Subject(s)
Embolization, Therapeutic/methods , Contrast Media/chemistry , Contrast Media/therapeutic use , Humans , Materials Testing , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Metal Nanoparticles/ultrastructure , Microscopy, Electron, Transmission , Neoplasms/blood supply , Neoplasms/diagnostic imaging , Neoplasms/therapy , Oxides/chemistry , Oxides/therapeutic use , Particle Size , Polystyrenes/chemistry , Tantalum/chemistry , Tantalum/therapeutic use , Tomography, X-Ray Computed
13.
Nucleic Acids Res ; 40(21): 10821-31, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23012265

ABSTRACT

DNA double-strand breaks (DSBs) are biologically one of the most important cellular lesions and possess varying degrees of chemical complexity. The notion that the repairability of more chemically complex DSBs is inefficient led to the concept that the extent of DSB complexity underlies the severity of the biological consequences. The repair of DSBs by non-homologous end joining (NHEJ) has been extensively studied but it remains unknown whether more complex DSBs require a different sub-set of NHEJ protein for their repair compared with simple DSBs. To address this, we have induced DSBs in fluorescently tagged mammalian cells (Ku80-EGFP, DNA-PKcs-YFP or XRCC4-GFP, key proteins in NHEJ) using ultra-soft X-rays (USX) or multi-photon near infrared (NIR) laser irradiation. We have shown in real-time that simple DSBs, induced by USX or NIR microbeam irradiation, are repaired rapidly involving Ku70/80 and XRCC4/Ligase IV/XLF. In contrast, DSBs with greater chemical complexity are repaired slowly involving not only Ku70/80 and XRCC4/Ligase IV/XLF but also DNA-PKcs. Ataxia telangiectasia-mutated inhibition only retards repair of the more chemically complex DSBs which require DNA-PKcs. In summary, the repair of DSBs by NHEJ is highly regulated with pathway choice and kinetics of repair dependent on the chemical complexity of the DSB.


Subject(s)
Antigens, Nuclear/metabolism , DNA Breaks, Double-Stranded , DNA End-Joining Repair , DNA-Activated Protein Kinase/metabolism , DNA-Binding Proteins/metabolism , Radiation, Ionizing , Animals , Ataxia Telangiectasia Mutated Proteins , Cell Cycle Proteins/antagonists & inhibitors , Cell Line , DNA-Binding Proteins/antagonists & inhibitors , Kinetics , Ku Autoantigen , Protein Serine-Threonine Kinases/antagonists & inhibitors , Tumor Suppressor Proteins/antagonists & inhibitors
14.
Eur Heart J ; 39(4): 313-315, 2018 01 21.
Article in English | MEDLINE | ID: mdl-29281062
15.
Phys Med Biol ; 69(9)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38518380

ABSTRACT

Objective. Accuracy and reproducibility in the measurement of radiation dose and associated reporting are critically important for the validity of basic and preclinical radiobiological studies performed with kilovolt x-ray radiation cabinets. This is essential to enable results of radiobiological studies to be repeated, as well as enable valid comparisons between laboratories. In addition, the commonly used single point dose value hides the 3D dose heterogeneity across the irradiated sample. This is particularly true for preclinical rodent models, and is generally difficult to measure directly. Radiation transport simulations integrated in an easy to use application could help researchers improve quality of dosimetry and reporting.Approach. This paper describes the use and dosimetric validation of a newly-developed Monte Carlo (MC) tool, SmART-RAD, to simulate the x-ray field in a range of standard commercial x-ray cabinet irradiators used for preclinical irradiations. Comparisons are made between simulated and experimentally determined dose distributions for a range of configurations to assess the potential use of this tool in determining dose distributions through samples, based on more readily available air-kerma calibration point measurements.Main results. Simulations gave very good dosimetric agreement with measured depth dose distributions in phantoms containing both water and bone equivalent materials. Good spatial and dosimetric agreement between simulated and measured dose distributions was obtained when using beam-shaping shielding.Significance. The MC simulations provided by SmART-RAD provide a useful tool to go from a limited number of dosimetry measurements to detailed 3D dose distributions through a non-homogeneous irradiated sample. This is particularly important when trying to determine the dose distribution in more complex geometries. The use of such a tool can improve reproducibility and dosimetry reporting in preclinical radiobiological research.


Subject(s)
Radiobiology , Radiometry , X-Rays , Reproducibility of Results , Radiometry/methods , Phantoms, Imaging , Monte Carlo Method
16.
Mutat Res ; 756(1-2): 66-77, 2013 Aug 30.
Article in English | MEDLINE | ID: mdl-23791770

ABSTRACT

It is well established that chromosomes exist in discrete territories (CTs) in interphase and are positioned in a cell-type specific probabilistic manner. The relative localisation of individual CTs within cell nuclei remains poorly understood, yet many cancers are associated with specific chromosome rearrangements and there is good evidence that relative territorial position influences their frequency of exchange. To examine this further, we characterised the complexity of radiation-induced chromosome exchanges in normal human bronchial epithelial (NHBE) cells by M-FISH analysis of PCC spreads and correlated the exchanges induced with their preferred interphase position, as determined by 1/2-colour 2D-FISH analysis, at the time of irradiation. We found that the frequency and complexity of aberrations induced were reduced in ellipsoid NHBE cells in comparison to previous observations in spherical cells, consistent with aberration complexity being dependent upon the number and proximity of damaged CTs, i.e. lesion proximity. To ask if particular chromosome neighbourhoods could be identified we analysed all radiation-induced pair-wise exchanges using SCHIP (statistics for chromosome interphase positioning) and found that exchanges between chromosomes (1;13), (9;17), (9;18), (12;18) and (16;21) all occurred more often than expected assuming randomness. All of these pairs were also found to be either sharing similar preferred positions in interphase and/or sharing neighbouring territory boundaries. We also analysed a human small cell lung cancer cell line, DMS53, by M-FISH observing the genome to be highly rearranged, yet possessing rearrangements also involving chromosomes (1;13) and (9;17). Our findings show evidence for the occurrence of non-random exchanges that may reflect the territorial organisation of chromosomes in interphase at time of damage and highlight the importance of cellular geometry for the induction of aberrations of varying complexity after exposure to both low and high-LET radiation.


Subject(s)
Bronchi/pathology , Chromosome Aberrations/radiation effects , Chromosome Positioning/radiation effects , Chromosomes, Human/radiation effects , Epithelial Cells/pathology , Gamma Rays , Bronchi/radiation effects , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/radiotherapy , Cell Nucleus/pathology , Cell Nucleus/radiation effects , Cells, Cultured , Epithelial Cells/radiation effects , Genome, Human/radiation effects , Humans , Image Processing, Computer-Assisted , In Situ Hybridization, Fluorescence , Interphase/genetics , Interphase/radiation effects , Karyotyping , Lung Neoplasms/pathology , Lung Neoplasms/radiotherapy , Metaphase/genetics , Metaphase/radiation effects
17.
World Neurosurg ; 172: e130-e143, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36587897

ABSTRACT

OBJECTIVE: To recalculate biological effective dose values (BED) for radio-surgical treatments of acoustic neuroma from a previous study. BEDs values were previously overestimated by only using beam-on times in calculations, so excluding the important beam-off-times (when deoxyribonucleic acid repair continues) which contribute to the overall treatment time. Simple BED estimations using a mono-exponential approximation may not always be appropriate but if used should include overall treatment time. METHODS: Time intervals between isocenters were estimated. These were especially important for the Gamma Knife Model 4C cases since manual changes significantly increase overall treatment times. Individual treatment parameters, such as iso-center number, beam-on-time, and beam-off-time, were then used to calculate BED values using a more appropriate bi-exponential model that includes fast and slow components of DNA damage repair over a wider time range. RESULTS: The revised BED estimates differed significantly from previously published values. The overestimates of BED, obtained using beam-on-time only, varied from 0%-40.3%. BED subclasses, each with a BED range of 5 Gy2.47, indicated that revised values were consistently reduced when compared with originally quoted values, especially for 4C compared with Perfexion cases. Furthermore, subdivision of 4C cases by collimator number further emphasized the impact of scheduled gap times on BED. Further analysis demonstrated important limitations of the mono-exponential model. Target volume was a major confounding factor in the interpretation of the results of this study. CONCLUSIONS: BED values should be estimated by including beam-on and beam-off times. Suggestions are provided for more accurate BED estimations in future studies.


Subject(s)
Neuroma, Acoustic , Radiosurgery , Humans , Radiosurgery/methods , Neuroma, Acoustic/radiotherapy , Neuroma, Acoustic/surgery , Radiotherapy Dosage
18.
Phys Med Biol ; 68(6)2023 03 31.
Article in English | MEDLINE | ID: mdl-36584393

ABSTRACT

This Roadmap paper covers the field of precision preclinical x-ray radiation studies in animal models. It is mostly focused on models for cancer and normal tissue response to radiation, but also discusses other disease models. The recent technological evolution in imaging, irradiation, dosimetry and monitoring that have empowered these kinds of studies is discussed, and many developments in the near future are outlined. Finally, clinical translation and reverse translation are discussed.


Subject(s)
Radiometry , Animals , X-Rays , Radiometry/methods , Radiography , Models, Animal , Phantoms, Imaging
19.
Exp Cell Res ; 317(3): 330-7, 2011 Feb 01.
Article in English | MEDLINE | ID: mdl-21056556

ABSTRACT

Cohesin, a hetero-tetrameric complex of SMC1, SMC3, Rad21 and Scc3, associates with chromatin after mitosis and holds sister chromatids together following DNA replication. Following DNA damage, cohesin accumulates at and promotes the repair of DNA double-strand breaks. In addition, phosphorylation of the SMC1/3 subunits contributes to DNA damage-induced cell cycle checkpoint regulation. The aim of this study was to determine the regulation and consequences of SMC1/3 phosphorylation as part of the cohesin complex. We show here that the ATM-dependent phosphorylation of SMC1 and SMC3 is mediated by H2AX, 53BP1 and MDC1. Depletion of RAD21 abolishes these phosphorylations, indicating that only the fully assembled complex is phosphorylated. Comparison of wild type SMC1 and SMC1S966A in fluorescence recovery after photo-bleaching experiments shows that phosphorylation of SMC1 is required for an increased mobility after DNA damage in G2-phase cells, suggesting that ATM-dependent phosphorylation facilitates mobilization of the cohesin complex after DNA damage.


Subject(s)
Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , DNA Breaks, Double-Stranded/radiation effects , DNA Repair , Chondroitin Sulfate Proteoglycans , G2 Phase , Humans , Multiprotein Complexes/metabolism , Phosphorylation , Protein Transport , Radiation, Ionizing , Cohesins
20.
Nucleic Acids Res ; 38(2): 477-87, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19906707

ABSTRACT

The cohesin protein complex holds sister chromatids together after synthesis until mitosis. It also contributes to post-replicative DNA repair in yeast and higher eukaryotes and accumulates at sites of laser-induced damage in human cells. Our goal was to determine whether the cohesin subunits SMC1 and Rad21 contribute to DNA double-strand break repair in X-irradiated human cells in the G2 phase of the cell cycle. RNA interference-mediated depletion of SMC1 sensitized HeLa cells to X-rays. Repair of radiation-induced DNA double-strand breaks, measured by gammaH2AX/53BP1 foci analysis, was slower in SMC1- or Rad21-depleted cells than in controls in G2 but not in G1. Inhibition of the DNA damage kinase DNA-PK, but not ATM, further inhibited foci loss in cohesin-depleted cells in G2. SMC1 depletion had no effect on DNA single-strand break repair in either G1 or late S/G2. Rad21 and SMC1 were recruited to sites of X-ray-induced DNA damage in G2-phase cells, but not in G1, and only when DNA damage was concentrated in subnuclear stripes, generated by partially shielded ultrasoft X-rays. Our results suggest that the cohesin complex contributes to cell survival by promoting the repair of radiation-induced DNA double-strand breaks in G2-phase cells in an ATM-dependent pathway.


Subject(s)
Cell Cycle Proteins/physiology , Chromosomal Proteins, Non-Histone/physiology , DNA Breaks, Double-Stranded , DNA Repair , Ataxia Telangiectasia Mutated Proteins , Cell Cycle Proteins/antagonists & inhibitors , Chromatin/radiation effects , Chromosomal Proteins, Non-Histone/antagonists & inhibitors , Chromosome Aberrations , DNA Breaks, Single-Stranded , DNA Replication , DNA-Activated Protein Kinase/antagonists & inhibitors , DNA-Binding Proteins/antagonists & inhibitors , G2 Phase , HeLa Cells , Humans , Mitosis , Nuclear Proteins/antagonists & inhibitors , Phosphoproteins/antagonists & inhibitors , Protein Serine-Threonine Kinases/antagonists & inhibitors , RNA Interference , Radiation Tolerance , Tumor Suppressor Proteins/antagonists & inhibitors , Cohesins
SELECTION OF CITATIONS
SEARCH DETAIL