Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Brain Behav Immun ; 116: 349-361, 2024 02.
Article in English | MEDLINE | ID: mdl-38142918

ABSTRACT

Maternal immune activation (MIA) during pregnancy increases the risk for the unborn foetus to develop neurodevelopmental conditions such as autism spectrum disorder and schizophrenia later in life. MIA mouse models recapitulate behavioural and biological phenotypes relevant to both conditions, and are valuable models to test novel treatment approaches. Selenium (Se) has potent anti-inflammatory properties suggesting it may be an effective prophylactic treatment against MIA. The aim of this study was to determine if Se supplementation during pregnancy can prevent adverse effects of MIA on offspring brain and behaviour in a mouse model. Selenium was administered via drinking water (1.5 ppm) to pregnant dams from gestational day (GD) 9 to birth, and MIA was induced at GD17 using polyinosinic:polycytidylic acid (poly-I:C, 20 mg/kg via intraperitoneal injection). Foetal placenta and brain cytokine levels were assessed using a Luminex assay and brain elemental nutrients assessed using inductively coupled plasma- mass spectrometry. Adult offspring were behaviourally assessed using a reinforcement learning paradigm, the three-chamber sociability test and the open field test. MIA elevated placental IL-1ß and IL-17, and Se supplementation successfully prevented this elevation. MIA caused an increase in foetal brain calcium, which was prevented by Se supplement. MIA caused in offspring a female-specific reduction in sociability, which was recovered by Se, and a male-specific reduction in social memory, which was not recovered by Se. Exposure to poly-I:C or selenium, but not both, reduced performance in the reinforcement learning task. Computational modelling indicated that this was predominantly due to increased exploratory behaviour, rather than reduced rate of learning the location of the food reward. This study demonstrates that while Se may be beneficial in ameliorating sociability deficits caused by MIA, it may have negative effects in other behavioural domains. Caution in the use of Se supplementation during pregnancy is therefore warranted.


Subject(s)
Autism Spectrum Disorder , Prenatal Exposure Delayed Effects , Selenium , Mice , Animals , Female , Pregnancy , Male , Humans , Behavior, Animal/physiology , Selenium/pharmacology , Placenta , Disease Models, Animal , Poly I-C/pharmacology , Dietary Supplements
2.
BMC Pediatr ; 23(1): 48, 2023 01 30.
Article in English | MEDLINE | ID: mdl-36717903

ABSTRACT

BACKGROUND: The Coronavirus disease (COVID-19) pandemic has created unprecedented acute global health challenges. However, it also presents a set of unquantified and poorly understood risks in the medium to long term, specifically, risks to children whose mothers were infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during pregnancy. Infections during pregnancy can increase the risk of atypical neurodevelopment in the offspring, but the long-term neurodevelopmental impact of in utero COVID-19 exposure is unknown. Prospective, longitudinal studies are needed to evaluate children exposed in utero to SARS-CoV2 to define this risk. METHODS: We have designed a prospective, case-controlled study to investigate the long-term impacts of SARS-CoV2 exposure on children exposed in utero. Women infected with SARS-CoV-2 during pregnancy will be recruited from Monash Health, the Royal Women's Hospital and Western Health (Melbourne, Australia) and Londrina Municipal Maternity Hospital Lucilla Ballalai and PUCPR Medical Clinical (Londrina, Brazil). A control group in a 2:1 ratio (2 non-exposed: 1 exposed mother infant dyad) comprising women who gave birth in the same month of delivery, are of similar age but did not contract SARS-CoV-2 during their pregnancy will also be recruited. We aim to recruit 170 exposed and 340 non-exposed mother-infant dyads. Clinical and socio-demographic data will be collected directly from the mother and medical records. Biospecimens and clinical and epidemiological data will be collected from the mothers and offspring at multiple time points from birth through to 15 years of age using standardised sample collection, and neurological and behavioural measures. DISCUSSION: The mapped neurodevelopmental trajectories and comparisons between SARS-CoV-2 exposed and control children will indicate the potential for an increase in atypical neurodevelopment. This has significant implications for strategic planning in the mental health and paediatrics sectors and long-term monitoring of children globally.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Infant , Pregnancy , Female , Humans , Child , Adolescent , SARS-CoV-2 , COVID-19/epidemiology , Prospective Studies , Case-Control Studies , RNA, Viral , Pregnancy Complications, Infectious/epidemiology
3.
Int J Mol Sci ; 24(14)2023 Jul 23.
Article in English | MEDLINE | ID: mdl-37511595

ABSTRACT

Glutamate N-methyl-D-aspartate receptor (NMDAR) hypofunction has been proposed to underlie schizophrenia symptoms. This theory arose from the observation that administration of NMDAR antagonists, which are compounds that inhibit NMDAR activity, reproduces behavioural and molecular schizophrenia-like phenotypes, including hallucinations, delusions and cognitive impairments in healthy humans and animal models. However, the role of specific NMDAR subunits in these schizophrenia-relevant phenotypes is largely unknown. Mounting evidence implicates the GluN2D subunit of NMDAR in some of these symptoms and pathology. Firstly, genetic and post-mortem studies show changes in the GluN2D subunit in people with schizophrenia. Secondly, the psychosis-inducing effects of NMDAR antagonists are blunted in GluN2D-knockout mice, suggesting that the GluN2D subunit mediates NMDAR-antagonist-induced psychotomimetic effects. Thirdly, in the mature brain, the GluN2D subunit is relatively enriched in parvalbumin (PV)-containing interneurons, a cell type hypothesized to underlie the cognitive symptoms of schizophrenia. Lastly, the GluN2D subunit is widely and abundantly expressed early in development, which could be of importance considering schizophrenia is a disorder that has its origins in early neurodevelopment. The limitations of currently available therapies warrant further research into novel therapeutic targets such as the GluN2D subunit, which may help us better understand underlying disease mechanisms and develop novel and more effective treatment options.


Subject(s)
Schizophrenia , Animals , Humans , Mice , Brain/metabolism , Interneurons/metabolism , Mice, Knockout , Receptors, N-Methyl-D-Aspartate/metabolism , Schizophrenia/metabolism
4.
Horm Behav ; 144: 105231, 2022 08.
Article in English | MEDLINE | ID: mdl-35779519

ABSTRACT

BACKGROUND: The BDNF Val66Met single nucleotide polymorphism has been implicated in stress sensitivity and Post-Traumatic Stress Disorder (PTSD) risk. We previously reported that chronic young-adult stress hormone treatment enhanced fear memory in adult BDNFVal66Met mice with the Met/Met genotype. This study aimed to extend this work to fear extinction learning, spontaneous recovery of fear, and neurobiological correlates in the amygdala. METHODS: Male and female Val/Val and Met/Met mice received corticosterone in their drinking water during late adolescence to model chronic stress. Following a 2-week recovery period, the mice underwent fear conditioning and extinction training. Immunofluorescent labelling was used to assess density of three interneuron subtypes; somatostatin, parvalbumin and calretinin, within distinct amygdala nuclei. RESULTS: No significant effects of genotype, treatment or sex were found for fear learning. However, adolescent CORT treatment selectively abolished fear extinction of female Met/Met mice. No effect of genotype, sex, or treatment was observed for spontaneous recovery of fear. Significant main effects of genotype and CORT emerged for somatostatin and calretinin cell density, again in females only, further supporting sex-specific effects of the Met/Met genotype and chronic CORT exposure. CONCLUSION: BDNF Val66Met genotype interacts with chronic adolescent stress hormone exposure to abolish fear extinction in female Met/Met mice in adulthood. This effect was associated with female-specific interneuron dysfunction induced by either genotype or stress hormone exposure, depending on the interneuron subtype. These data provide biological insight into the role of BDNF in sex differences in sensitivity to stress and vulnerability to stress-related disorders in adulthood.


Subject(s)
Brain-Derived Neurotrophic Factor , Fear , Amygdala/metabolism , Animals , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Calbindin 2/genetics , Calbindin 2/metabolism , Extinction, Psychological , Female , Genotype , Glucocorticoids/pharmacology , Interneurons/metabolism , Male , Mice , Polymorphism, Single Nucleotide , Somatostatin/genetics , Somatostatin/metabolism
5.
Hippocampus ; 31(3): 321-334, 2021 03.
Article in English | MEDLINE | ID: mdl-33320965

ABSTRACT

Intrauterine growth restriction (IUGR) is associated with hippocampal alterations that can increase the risk of short-term memory impairments later in life. Despite the role of hippocampal neurogenesis in learning and memory, research into the long-lasting impact of IUGR on these processes is limited. We aimed to determine the effects of IUGR on neuronal proliferation, differentiation and morphology, and on memory function at adolescent equivalent age. At embryonic day (E) 18 (term ∼E22), placental insufficiency was induced in pregnant Wistar rats via bilateral uterine vessel ligation to generate IUGR offspring (n = 10); control offspring (n = 11) were generated via sham surgery. From postnatal day (P) 36-44, spontaneous location recognition (SLR), novel object location and recognition (NOL, NOR), and open field tests were performed. Brains were collected at P45 to assess neurogenesis (immunohistochemistry), dendritic morphology (Golgi staining), and brain-derived neurotrophic factor expression (BDNF; Western blot analysis). In IUGR versus control rats there was no difference in object preference in the NOL or NOR, the similar and dissimilar condition of the SLR task, or in locomotion and anxiety-like behavior in the open field. There was a significant increase in the linear density of immature neurons (DCX+) in the subgranular zone (SGZ) of the dentate gyrus (DG), but no difference in the linear density of proliferating cells (Ki67+) in the SGZ, nor in areal density of mature neurons (NeuN+) or microglia (Iba-1+) in the DG in IUGR rats compared to controls. Dendritic morphology of dentate granule cells did not differ between groups. Protein expression of the BDNF precursor (pro-BDNF), but not mature BDNF, was increased in the hippocampus of IUGR compared with control rats. These findings highlight that while the long-lasting prenatal hypoxic environment may impact brain development, it may not impact hippocampal-dependent learning and memory in adolescence.


Subject(s)
Fetal Growth Retardation , Placenta , Animals , Dentate Gyrus , Female , Fetal Growth Retardation/metabolism , Hippocampus/metabolism , Neurogenesis/physiology , Pregnancy , Rats , Rats, Wistar
6.
Brain Behav Immun ; 91: 339-349, 2021 01.
Article in English | MEDLINE | ID: mdl-33096253

ABSTRACT

Maternal immune activation (MIA) increases risk for neuropsychiatric disorders such as autism spectrum disorder (ASD) in offspring later in life through unknown causal mechanisms. Growing evidence implicates parvalbumin-containing GABAergic interneurons as a key target in rodent MIA models. We targeted a specific neurodevelopmental window of parvalbumin interneurons in a mouse MIA model to examine effects on spatial working memory, a key domain in ASD that can manifest as either impairments or improvements both clinically and in animal models. Pregnant dams received three consecutive intraperitoneal injections of Polyinosinic:polycytidylic acid (poly(I:C), 5 mg/kg) at gestational days 13, 14 and 15. Spatial working memory was assessed in young adult offspring using touchscreen operant chambers and the Trial-Unique Non-matching to Location (TUNL) task. Anxiety, novelty seeking and short-term memory were assessed using Elevated Plus Maze (EPM) and Y-maze novelty preference tasks. Fluorescent immunohistochemistry was used to assess hippocampal parvalbumin cell density, intensity and co-expression with perineuronal nets. qPCR was used to assess the expression of putatively implicated gene pathways. MIA targeting a window of parvalbumin interneuron development increased spatial working memory performance on the TUNL touchscreen task which was not influenced by anxiety or novelty seeking behaviour. The model reduced fetal mRNA levels of Gad1 and adult hippocampal mRNA levels of Pvalb and the distribution of low intensity parvalbumin interneurons was altered. We speculate a specific timing window for parvalbumin interneuron development underpins the apparently paradoxical improved spatial working memory phenotype found both across several rodent models of autism and clinically in ASD.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Animals , Disease Models, Animal , Female , Interneurons , Memory, Short-Term , Mice , Parvalbumins , Pregnancy
7.
Brain Behav Immun ; 81: 161-171, 2019 10.
Article in English | MEDLINE | ID: mdl-31175998

ABSTRACT

A hallmark feature of schizophrenia is altered high frequency neural oscillations, including reduced auditory-evoked gamma oscillatory power, which is underpinned by parvalbumin (PV) interneuron dysfunction. Maternal immune activation (MIA) in rodents models an environmental risk factor for schizophrenia and recapitulates these PV interneuron changes. This study sought to link reduced PV expression in the MIA model with alterations to auditory-evoked gamma oscillations and transcript expression. We further aligned transcriptional findings from the animal model with human genome sequencing data. We show that MIA, induced by the viral mimetic, poly-I:C in C57Bl/6 mice, caused in adult offspring reduced auditory-evoked gamma and theta oscillatory power paralleled by reduced PV protein levels. We then showed the Arx gene, critical to healthy neurodevelopment of PV interneurons, is reduced in the forebrain of MIA exposed mice. Finally, in a whole-genome sequenced patient cohort, we identified a novel missense mutation of ARX in a patient with schizophrenia and in the Psychiatric Genomics Consortium 2 cohort, a nominal association of proximal ARX SNPs with the disorder. This suggests MIA, as a risk factor for schizophrenia, may be influencing Arx expression to induce the GABAergic dysfunction seen in schizophrenia and that the ARX gene may play a role in the prenatal origins of schizophrenia pathophysiology.


Subject(s)
Homeodomain Proteins/genetics , Immunity, Maternally-Acquired/immunology , Schizophrenia/genetics , Schizophrenia/immunology , Transcription Factors/genetics , gamma-Aminobutyric Acid/immunology , Adult , Animals , Brain/metabolism , Disease Models, Animal , Female , GABA Agents/metabolism , Gamma Rhythm/drug effects , Hippocampus/metabolism , Homeodomain Proteins/immunology , Homeodomain Proteins/metabolism , Humans , Interneurons/metabolism , Interneurons/pathology , Male , Mice , Mice, Inbred C57BL , Middle Aged , Neurons/metabolism , Neurons/pathology , Parvalbumins/metabolism , Poly I-C/pharmacology , Prefrontal Cortex/metabolism , Pregnancy , Schizophrenia/pathology , Theta Rhythm/drug effects , Transcription Factors/immunology , Transcription Factors/metabolism , gamma-Aminobutyric Acid/metabolism
9.
Biochim Biophys Acta ; 1842(11): 2126-35, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25159716

ABSTRACT

Altered brain-derived neurotrophic factor (BDNF) signalling and dopaminergic neurotransmission have been shown in the forebrain in schizophrenia. The 'two hit' hypothesis proposes that two major disruptions during development are involved in the pathophysiology of this illness. We therefore used a 'two hit' rat model of combined neonatal and young-adult stress to assess effects on BDNF signalling and dopamine receptor expression. Wistar rats were exposed to neonatal maternal separation (MS) stress and/or adolescent/young-adult corticosterone (CORT) treatment. At adulthood the medial prefrontal cortex (mPFC), caudate putamen (CPu) and nucleus accumbens (NAc) were analysed by qPCR and Western blot. The 'two hit' combination of MS and CORT treatment caused significant increases in BDNF mRNA and protein levels in the mPFC of male, but not female rats. BDNF mRNA expression was unchanged in the CPu but was significantly reduced by CORT in the NAc. DR3 and DR2 mRNA were significantly up-regulated in the mPFC of two-hit rats and a positive correlation was found between BDNF and DR3 expression in male, but not female rats. DR2 and DR3 expression were significantly increased following CORT treatment in the NAc and a significant negative correlation between BDNF and DR3 and DR2 mRNA levels was found. Our data demonstrate male-specific two-hit effects of developmental stress on BDNF and DR3 expression in the mPFC. Furthermore, following chronic adolescent CORT treatment, the relationship between BDNF and dopamine receptor expression was significantly altered in the NAc. These results elucidate the long-term effects of 'two hit' developmental stress on behaviour.

10.
Neurobiol Dis ; 69: 248-62, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24825316

ABSTRACT

Huntington's disease (HD) is a neurodegenerative disorder caused by a tandem repeat mutation in the huntingtin gene. Lifestyle factors, such as lack of activity may contribute to the variability in the age of disease onset. Therefore, better understanding of environmental modifiers may uncover potential therapeutic approaches to delay disease onset and progression. Recent data suggest that HD patients and transgenic mouse models show a dysregulated stress response. In this present study, we elevated stress hormone levels through oral corticosterone (CORT) treatment and assessed its impact on the development of motor impairment and cognitive deficits using the R6/1 transgenic mouse model of HD. We found that CORT consumption did not alter rotarod performance of R6/1 HD or wild-type (WT) littermates. However, the onset of hippocampal-dependent Y-maze deficits was accelerated in male R6/1 mice by 5days of CORT treatment, whereas short term memory of WT and female R6/1 mice was unaffected. We then further investigated the male HD susceptibility to CORT by measuring TrkB activation, BDNF and glucocorticoid receptor expression as well as the level of cell proliferation in the hippocampus. CORT treatment increased the levels of phosphorylated TrkB in male R6/1 mice only. There were no effects of CORT on hippocampal BDNF protein or mRNA levels; nor on expression of the glucocorticoid receptors in any group. Hippocampal cell proliferation was decreased in male R6/1 mice and this was further reduced in CORT-drinking male R6/1 mice. Female mice (WT and R6/1) appeared to be protected from the impacts of CORT treatment in all our hippocampal measures. Overall, our data demonstrate that treatment with corticosterone is able to modulate the onset of HD symptomatology. We present the first evidence of a male-specific vulnerability to stress impacting on the development of short-term memory deficits in HD. More generally, we found that female mice were protected from the detrimental effects of CORT treatment on a variety of hippocampus-based measures. Hippocampal plasticity and memory in HD may be more susceptible to the impacts of stress in a sex-dependent manner. We propose clinical investigations of stress as a key environmental modifier of HD symptom onset.


Subject(s)
Corticosterone/metabolism , Huntington Disease/physiopathology , Memory Disorders/physiopathology , Memory, Short-Term/physiology , Age of Onset , Animals , Brain-Derived Neurotrophic Factor/metabolism , Cell Proliferation/physiology , Disease Models, Animal , Hippocampus/physiopathology , Male , Maze Learning/physiology , Mice, Transgenic , Motor Activity/physiology , RNA, Messenger/metabolism , Receptor, trkB/metabolism , Receptors, Glucocorticoid/metabolism , Receptors, Mineralocorticoid/metabolism , Rotarod Performance Test , Sex Characteristics
11.
Hippocampus ; 24(10): 1197-211, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24802968

ABSTRACT

Post-mortem studies have demonstrated reduced expression of brain-derived neurotrophic factor (BDNF) in the hippocampus of schizophrenia and major depression patients. The "two hit" hypothesis proposes that two or more major disruptions at specific time points during development are involved in the pathophysiology of these mental illnesses. However, the role of BDNF in these "two hit" effects is unclear. Our aim was to behaviorally characterize a "two hit" rat model of developmental stress accompanied by an in-depth assessment of BDNF expression and signalling. Wistar rats were exposed to neonatal maternal separation (MS) stress and/or adolescent/young-adult corticosterone (CORT) treatment. In adulthood, models of cognitive and negative symptoms of mental illness were analyzed. The hippocampus was then dissected into dorsal (DHP) and ventral (VHP) regions and analyzed by qPCR for exon-specific BDNF gene expression or by Western blot for BDNF protein expression and downstream signaling. Male "two hit" rats showed marked disruptions in short-term spatial memory (Y-maze) which were absent in females. However, female "two hit" rats showed signs of anhedonia (sucrose preference test), which were absent in males. Novel object recognition and anxiety (elevated plus maze) were unchanged by either of the two "hits". In the DHP, MS caused a male-specific increase in BDNF Exons I, II, IV, VII, and IX mRNA but a decrease in mature BDNF and phosphorylated TrkB (pTrkB) protein expression in adulthood. In the VHP, BDNF transcript expression was unchanged; however, in female rats only, MS significantly decreased mature BDNF and pTrkB protein expression in adulthood. These data demonstrate that MS causes region-specific and sex-specific long-term effects on BDNF expression and signaling and, importantly, mRNA expression does not always infer protein expression. Alterations to BDNF signaling may mediate the sex-specific effects of developmental stress on anhedonic behaviors.


Subject(s)
Anhedonia/physiology , Brain-Derived Neurotrophic Factor/metabolism , Hippocampus/physiopathology , Memory Disorders/physiopathology , Sex Characteristics , Spatial Memory/physiology , Animals , Anxiety/physiopathology , Corticosterone , Dietary Sucrose/administration & dosage , Disease Models, Animal , Feeding Behavior/physiology , Female , Hippocampus/growth & development , Male , Maternal Deprivation , Memory, Short-Term/physiology , RNA, Messenger/metabolism , Random Allocation , Rats, Wistar , Receptor, trkB/metabolism , Recognition, Psychology/physiology , Stress, Psychological/physiopathology , Taste Perception/physiology
12.
Neurosci Biobehav Rev ; 156: 105488, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38042358

ABSTRACT

Mothers exposed to infections during pregnancy disproportionally birth children who develop autism and schizophrenia, disorders associated with altered GABAergic function. The maternal immune activation (MIA) model recapitulates this risk factor, with many studies also reporting disruptions to GABAergic interneuron expression, protein, cellular density and function. However, it is unclear if there are species, sex, age, region, or GABAergic subtype specific vulnerabilities to MIA. Furthermore, to fully comprehend the impact of MIA on the GABAergic system a synthesised account of molecular, cellular, electrophysiological and behavioural findings was required. To this end we conducted a systematic review of GABAergic interneuron changes in the MIA model, focusing on the prefrontal cortex and hippocampus. We reviewed 102 articles that revealed robust changes in a number of GABAergic markers that present as gestationally-specific, region-specific and sometimes sex-specific. Disruptions to GABAergic markers coincided with distinct behavioural phenotypes, including memory, sensorimotor gating, anxiety, and sociability. Findings suggest the MIA model is a valid tool for testing novel therapeutics designed to recover GABAergic function and associated behaviour.


Subject(s)
Prenatal Exposure Delayed Effects , Rodentia , Male , Pregnancy , Female , Animals , Child , Humans , Interneurons/metabolism , Prefrontal Cortex , Mothers , Behavior, Animal/physiology , Disease Models, Animal
13.
Article in English | MEDLINE | ID: mdl-38950841

ABSTRACT

Infection during pregnancy is a substantial risk factor for the unborn child to develop autism or schizophrenia later in life, and is thought to be driven by maternal immune activation (MIA). MIA can be modelled by exposing pregnant mice to Polyinosinic: polycytidylic acid (Poly-I:C), a viral mimetic that induces an immune response and recapitulates in the offspring many neurochemical features of ASD and schizophrenia, including altered BDNF-TrkB signalling and disruptions to excitatory/inhibitory balance. Therefore, we hypothesised that a BDNF mimetic, 7,8-Dihydroxyflavone (7,8-DHF), administered prophylactically to the dam may prevent the neurobehavioural sequelae of disruptions induced by MIA. Dams were treated with 7,8-DHF in the drinking water (0.08 mg/ML) from gestational day (GD) 9-20 and were exposed to Poly-I:C at GD17 (20 mg/kg, i.p.). Foetal brains were collected 6 h post Poly-I:C exposure for RT-qPCR analysis of BDNF, cytokine, GABAergic and glutamatergic gene targets. A second adult cohort were tested in a battery of behavioural tests relevant to schizophrenia and the prefrontal cortex and ventral hippocampus dissected for RT-qPCR analysis. Foetal brains exposed to Poly-I:C showed increased IL-6, but reduced expression of Ntrk2 and multiple GABAergic and glutamatergic markers. Anxiety-like behaviour was observed in adult offspring prenatally exposed to poly-I:C, which was accompanied by altered expression of Gria2 in the prefrontal cortex and Gria4 in the ventral hippocampus. While 7-8 DHF normalised the expression of some glutamatergic (Grm5) and GABAergic (Gabra1) genes in Poly-I:C exposed offspring, it also led to substantial alterations in offspring not exposed to Poly-I:C. Furthermore, mice exposed to 7,8-DHF prenatally showed increased pre-pulse inhibition and reduced working memory in adulthood. These data advance understanding of how 7,8-DHF and MIA prenatal exposure impacts genes critical to excitatory/inhibitory pathways and related behaviour.

14.
J Neurochem ; 126(3): 389-99, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23414458

ABSTRACT

Neurodevelopmental psychiatric disorders such as schizophrenia may be caused by a combination of gene × environment, gene × gene, and/or gene × sex interactions. Reduced expression of both Reelin and Brain-Derived Neurotrophic factor (BDNF) has been associated with schizophrenia in human post-mortem studies. However, it remains unclear how Reelin and BDNF interact (gene × gene) and whether this is sex-specific (gene × sex). This study investigated BDNF-TrkB signaling in the hippocampus of male and female Reelin heterozygous (Rln(+/-) ) mice. We found significantly increased levels of BDNF in the ventral hippocampus (VHP) of female, but not male Rln(+/-) compared to wild-type (WT) controls. While levels of TrkB were not significantly altered, phosphorylated TrkB (pTrkB) levels were significantly lower, again only in female Rln(+/-) compared to WT. This translated to downstream effects with a significant decrease in phosphorylated ERK1 (pERK1). No changes in BDNF, TrkB, pTrkB or pERK1/2 were observed in the dorsal hippocampus of Rln(+/-) mice. Ovariectomy (OVX) had no effect in WT controls, but caused a significant decrease in BDNF expression in the VHP of Rln(+/-) mice to the levels of intact WT controls. The high expression of BDNF was restored in OVX Rln(+/-) mice by 17ß-estradiol treatment, suggesting that Rln(+/-) mice respond differently to an altered estradiol state than WT controls. In addition, while OVX had no significant effect on TrkB or ERK expression/phosphorylation, OVX + estradiol treatment markedly increased TrkB and ERK1 phosphorylation in Rln(+/-) and, to a lesser extent in WT controls, compared to intact genotype-matched controls. These data may provide a better understanding of the interaction of Reelin and BDNF in the hippocampus, which may be involved in schizophrenia.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Extracellular Matrix Proteins/genetics , Gonadal Steroid Hormones/metabolism , Hippocampus/metabolism , Nerve Tissue Proteins/genetics , Serine Endopeptidases/genetics , Sex Characteristics , Signal Transduction/physiology , Animals , Blotting, Western , Brain-Derived Neurotrophic Factor/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Extracellular Matrix Proteins/metabolism , Female , Male , Mice , Nerve Growth Factors/genetics , Nerve Growth Factors/metabolism , Nerve Tissue Proteins/metabolism , Ovariectomy , Receptor, trkA/genetics , Receptor, trkA/metabolism , Reelin Protein , Schizophrenia/genetics , Schizophrenia/metabolism , Serine Endopeptidases/metabolism
15.
Brain Behav Immun Health ; 27: 100572, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36570792

ABSTRACT

Background: Infection during pregnancy can increase the risk of neurodevelopmental disorders in offspring. The impact of maternal SARS-CoV-2 infection on infant neurodevelopment is poorly understood. The maternal immune response to infection may be mimicked in rodent models of maternal immune activation which recapitulate altered neurodevelopment and behavioural disturbances in the offspring. In these models, epigenetic mechanisms, in particular DNA methylation, are one pathway through which this risk is conferred in utero to offspring. We hypothesised that in utero exposure to SARS-CoV-2 in humans may alter infant DNA methylation, particularly in genes associated with neurodevelopment. We aimed to test this hypothesis in a pilot sample of children in Victoria, Australia, who were exposed in utero to SARS-CoV-2. Methods: DNA was extracted from buccal swab specimens from (n = 4) SARS-CoV-2 in utero exposed and (n = 4) non-exposed infants and methylation status assessed across 850,000 methylation sites using an Illumina EPIC BeadChip. We also conducted an exploratory enrichment analysis using Gene Ontology annotations. Results: 1962 hypermethylated CpG sites were identified with an unadjusted p-value of 0.05, where 1133 CpGs mapped to 959 unique protein coding genes, and 716 hypomethylated CpG sites mapped to 559 unique protein coding genes in SARS-CoV-2 exposed infants compared to non-exposed. One differentially methylated position (cg06758191), located in the gene body of AFAP1 that was hypomethylated in the SARS-CoV-2 exposed cohort was significant after correction for multiple testing (FDR-adjusted p-value <0.00083). Two significant differentially methylated regions were identified; a hypomethylated intergenic region located in chromosome 6p proximal to the genes ZP57 and HLA-F (fwer <0.004), and a hypomethylated region in the promoter and body of the gene GAREM2 (fwer <0.036). Gene network enrichment analysis revealed differential methylation in genes corresponding to pathways relevant to neurodevelopment, including the ERBB pathway. Conclusion: These pilot data suggest that exposure to SARS-CoV-2 in utero differentially alters methylation of genes in pathways that play a role in human neurodevelopment.

16.
Neurobiol Dis ; 46(3): 722-31, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22426399

ABSTRACT

Psychiatric illnesses, such as schizophrenia, are most likely caused by an interaction between genetic predisposition and environmental factors, including stress during development. The neurotrophin, brain-derived neurotrophic factor (BDNF) has been implicated in this illness as BDNF levels are decreased in the brain of patients with schizophrenia. The aim of the present study was to assess the combined effect of reduced BDNF levels and postnatal stress, simulated by chronic young-adult treatment with the stress hormone, corticosterone. From 6 weeks of age, female and male BDNF heterozygous mice and their wild-type controls were chronically treated with corticosterone in their drinking water for 3 weeks. At 11 weeks of age, male, but not female BDNF heterozygous mice treated with corticosterone exhibited a profound memory deficit in the Y-maze. There were no differences between the groups in baseline prepulse inhibition (PPI), a measure of sensorimotor gating, or its disruption by treatment with MK-801. However, an increase in startle caused by MK-801 treatment was absent in male, but not female BDNF heterozygous mice, irrespective of corticosterone treatment. Analysis of protein levels of the NMDA receptor subunits NR1, NR2A, NR2B and NR2C, showed a marked increase of NR2B levels in the dorsal hippocampus of male BDNF heterozygous mice treated with corticosterone. In the ventral hippocampus, significantly reduced levels of NR2A, NR2B and NR2C were observed in male BDNF heterozygous mice. The NMDA receptor effects in hippocampal sub-regions could be related to the spatial memory deficits and the loss of the effect of MK-801 on startle in these mice, respectively. No significant changes in NMDA receptor subunit levels were observed in any of the female groups. Similarly, no significant changes in levels of BDNF or its receptor, TrkB, were found other than the expected reduced levels of BDNF in heterozygous mice. In conclusion, the data show differential interactive effects of reduced levels of BDNF expression and corticosterone treatment on spatial memory and startle in male and female mice, accompanied by significant, but region-specific changes in NMDA receptor subunit levels in the dorsal and ventral hippocampus. These results could be important for our understanding of the interaction of neurodevelopmental stress and BDNF deficiency in cognitive and anxiety-related symptoms of psychiatric illnesses, such as schizophrenia.


Subject(s)
Behavior, Animal/drug effects , Brain-Derived Neurotrophic Factor/genetics , Corticosterone/pharmacology , Receptors, N-Methyl-D-Aspartate/drug effects , Animals , Blotting, Western , Body Weight/drug effects , Body Weight/genetics , Brain-Derived Neurotrophic Factor/biosynthesis , Dizocilpine Maleate/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Female , Heterozygote , Hippocampus/metabolism , Male , Maze Learning/drug effects , Memory/physiology , Memory, Short-Term/drug effects , Mice , Mice, Inbred C57BL , Reflex, Startle/genetics , Reflex, Startle/physiology , Sex Characteristics
17.
Hippocampus ; 21(4): 434-45, 2011 Apr.
Article in English | MEDLINE | ID: mdl-20087884

ABSTRACT

Several studies have suggested a close interaction between serotonin (5-HT) and BDNF; however, little is known of the specific relationship between BDNF and the 5-HT(2C) receptor. Therefore, in this study we investigated BDNF expression in 5-HT(2C) receptor knockout mice (5-HT(2C) KO). We also assessed functional consequences of any changes in BDNF using a behavioral test battery. Western blot analysis demonstrated a significant 2.2-fold increase in the expression of the mature form of BDNF in 5-HT(2C) KO mice when compared with wild-type controls (WT) in the hippocampus (P = 0.008), but not frontal cortex or striatum. No differences in the expression of the pro-BDNF isoform were found, and the ratio of mature/pro BDNF was significantly increased in 5-HT(2C) KO (P = 0.003). BDNF mRNA expression in the hippocampus was not different between the genotypes. Hence, increased mature BDNF levels in 5-HT(2C) KO hippocampus are most likely due to increased extracellular cleavage rates of pro-BDNF to its mature form. Protein expression of the BDNF receptor, tropomycin-related receptor B (TrkB), was also unchanged in the hippocampus, frontal cortex and striatum. With repeated training in a 10-day win-shift radial arm maze task, 5-HT(2C) KO and WT showed similar decreases of the number of working memory and reference memory errors. In addition, no genotype specific differences were observed for passive or active avoidance learning. 5-HT(2C) KO showed modest locomotor hyperactivity but no differences in tests for anxiety, sensorimotor gating, or depressive-like behaviors; however, in the tail suspension test 5-HT(2C) KO showed significantly reduced climbing (P < 0.05). In conclusion, loss of 5-HT(2C) receptor expression leads to a marked and selective increase in levels of the mature form of BDNF in the hippocampus. Despite this marked increase, 5-HT(2C) KO show only subtle behavioral changes.


Subject(s)
Brain-Derived Neurotrophic Factor , Hippocampus/metabolism , Protein Precursors , Receptor, Serotonin, 5-HT2C/metabolism , Animals , Behavior, Animal/physiology , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Corpus Striatum/metabolism , Depression/metabolism , Frontal Lobe/metabolism , Memory , Mice , Mice, Knockout , Protein Precursors/genetics , Protein Precursors/metabolism , Receptor, trkB/metabolism , Serotonin/metabolism
18.
Mol Cell Neurosci ; 41(1): 1-7, 2009 May.
Article in English | MEDLINE | ID: mdl-19185610

ABSTRACT

The aromatase knockout (ArKO) mouse is completely estrogen deficient. We previously detected apoptosis in the hypothalamus of 1 year-old male ArKO mice. This study shows that 12 week-old female ArKO mice display spontaneous apoptosis of pyramidal neurons in the frontal cortex while wild-type (WT) littermates show no signs of apoptosis. Concomitantly, bcl-2 related anti-apoptotic genes are down-regulated whereas the pro-apoptotic gene TRADD is up-regulated in the female ArKO frontal cortex. This phenotype can be rescued by 3-week replacement of 17beta-estradiol. Furthermore, the apoptosis phenotype is exacerbated in 12-15 month-old female ArKO mice, which have 30% less neurons in the frontal cortex and lower brain weights than WT counterparts. These data show that estrogens are essential for the survival of female cortical neurons even in the absence of pathological conditions or external assaults. Our observations also demonstrate the sexually dimorphic susceptibility of neurons to estrogen deficiency.


Subject(s)
Apoptosis/physiology , Aromatase , Estrogens/deficiency , Frontal Lobe/metabolism , Frontal Lobe/pathology , Animals , Aromatase/genetics , Aromatase/metabolism , Caspase 3/metabolism , Cell Survival , DNA-Binding Proteins , Estradiol/administration & dosage , Female , Frontal Lobe/cytology , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Tissue Proteins/metabolism , Neurons/cytology , Neurons/metabolism , Neurons/pathology , Nuclear Proteins/metabolism , Organ Size
19.
Psychoneuroendocrinology ; 110: 104448, 2019 12.
Article in English | MEDLINE | ID: mdl-31546114

ABSTRACT

There is currently no treatment available for the cognitive symptoms of schizophrenia, but evidence suggests that selective estrogen receptor modulators (SERMs) may provide relief. Our recent animal model data showed that a lack of female sex hormones in mice impairs the ability of hippocampal neurons to synchronise and generate oscillations within the frequency range of 30-80 Hz (gamma power) leading to cognitive impairment, while both estradiol and the SERM, raloxifene, recovered this. Given that cognitive impairment is accompanied by abnormal gamma power in schizophrenia, this study aimed to determine the effects of raloxifene on gamma power during spatial memory tasks in the prenatal immune challenged (poly-I:C) mouse model with relevance to schizophrenia. Pregnant dams received the viral mimetic poly-I:C (20 mg/kg, i.p.) at gestational day 17. Male and female offspring were treated with placebo or raloxifene implants at adulthood. Local field potentials from the CA1 hippocampus were simultaneously recorded during the Y-maze test of short term spatial memory and the cheeseboard maze test of long-term spatial learning and memory and cognitive flexibility. In female but not male mice, poly I:C exposure reduced gamma power during decision making and prolonged the time spent in the centre (decision making phase) during the Y-maze task. Female poly-I:C exposed mice also showed increased gamma power during acquisition of the cheeseboard long term memory task and perseverative behaviour. Treatment with raloxifene recovered gamma power and decision making deficits in the Y-maze and restored gamma power changes during the cheeseboard maze task as well as perseverative behaviour. Male mice showed no electrophysiological or behavioural effects of poly-I:C or raloxifene treatment. In summary, poly-I:C exposure induced female specific cognitive impairments accompanied by altered neural oscillations in the gamma frequency and raloxifene recovered these abnormalities.


Subject(s)
Cognition/drug effects , Gamma Rhythm/drug effects , Immune System/drug effects , Prenatal Exposure Delayed Effects , Raloxifene Hydrochloride/pharmacology , Animals , Behavior, Animal/drug effects , Biological Clocks , Cognition/physiology , Disease Models, Animal , Female , Gamma Rhythm/physiology , Immune System/physiology , Lymphocyte Activation/drug effects , Male , Mice , Mice, Inbred C57BL , Poly I-C/pharmacology , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/immunology , Prenatal Exposure Delayed Effects/psychology , Psychomotor Performance/drug effects , Schizophrenia/immunology , Schizophrenia/pathology
20.
Brain Sci ; 8(7)2018 Jun 29.
Article in English | MEDLINE | ID: mdl-29966252

ABSTRACT

Stress, and the chronic overactivation of major stress hormones, is associated with several neuropsychiatric disorders. However, clinical literature on the exact role of stress either as a causative, triggering, or modulatory factor to mental illness remains unclear. We suggest that the impact of stress on the brain and behavior is heavily dependent on the developmental timing at which the stress has occurred, and as such, this may contribute to the overall variability reported on the association of stress and mental illness. Here, animal models provide a way to comprehensively assess the temporal impact of stress on behavior in a controlled manner. This review particularly focuses on the long-term impact of stress on behavior in various rodent stress models at three major developmental time points: early life, adolescence, and adulthood. We characterize the various stressor paradigms into physical, social, and pharmacological, and discuss commonalities and differences observed across these various stress-inducing methods. In addition, we discuss here how sex can influence the impact of stress at various developmental time points. We conclude here that early postnatal life and adolescence represent particular periods of vulnerability, but that stress exposure during early life can sometimes lead to resilience, particularly to fear-potentiated memories. In the adult brain, while shorter periods of stress tended to enhance spatial memory, longer periods caused impairments. Overall, males tended to be more vulnerable to the long-term effects of early life and adolescent stress, albeit very few studies incorporate both sexes, and further well-powered sex comparisons are needed.

SELECTION OF CITATIONS
SEARCH DETAIL