Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Eur J Nucl Med Mol Imaging ; 50(13): 3826-3837, 2023 11.
Article in English | MEDLINE | ID: mdl-37540237

ABSTRACT

BACKGROUND: Cancer is a leading cause of death worldwide. While routine diagnosis of cancer is performed mainly with biopsy sampling, it is suboptimal to accurately characterize tumor heterogeneity. Positron emission tomography (PET)-driven radiomic research has demonstrated promising results when predicting clinical endpoints. This study aimed to investigate the added value of quantum machine learning both in simulator and in real quantum computers utilizing error mitigation techniques to predict clinical endpoints in various PET cancer patients. METHODS: Previously published PET radiomics datasets including 11C-MET PET glioma, 68GA-PSMA-11 PET prostate and lung 18F-FDG PET with 3-year survival, low-vs-high Gleason risk and 2-year survival as clinical endpoints respectively were utilized in this study. Redundancy reduction with 0.7, 0.8, and 0.9 Spearman rank thresholds (SRT), followed by selecting 8 and 16 features from all cohorts, was performed, resulting in 18 dataset variants. Quantum advantage was estimated by Geometric Difference (GDQ) score in each dataset variant. Five classic machine learning (CML) and their quantum versions (QML) were trained and tested in simulator environments across the dataset variants. Quantum circuit optimization and error mitigation were performed, followed by training and testing selected QML methods on the 21-qubit IonQ Aria quantum computer. Predictive performances were estimated by test balanced accuracy (BACC) values. RESULTS: On average, QML outperformed CML in simulator environments with 16-features (BACC 70% and 69%, respectively), while with 8-features, CML outperformed QML with + 1%. The highest average QML advantage was + 4%. The GDQ scores were ≤ 1.0 in all the 8-feature cases, while they were > 1.0 when QML outperformed CML in 9 out of 11 cases. The test BACC of selected QML methods and datasets in the IonQ device without error mitigation (EM) were 69.94% BACC, while EM increased test BACC to 75.66% (76.77% in noiseless simulators). CONCLUSIONS: We demonstrated that with error mitigation, quantum advantage can be achieved in real existing quantum computers when predicting clinical endpoints in clinically relevant PET cancer cohorts. Quantum advantage can already be achieved in simulator environments in these cohorts when relying on QML.


Subject(s)
Fluorodeoxyglucose F18 , Lung Neoplasms , Male , Humans , Positron-Emission Tomography/methods , Lung Neoplasms/pathology , Lung/pathology , Computers , Positron Emission Tomography Computed Tomography/methods , Retrospective Studies
2.
Sci Rep ; 12(1): 1851, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35115630

ABSTRACT

Quantum machine learning has experienced significant progress in both software and hardware development in the recent years and has emerged as an applicable area of near-term quantum computers. In this work, we investigate the feasibility of utilizing quantum machine learning (QML) on real clinical datasets. We propose two QML algorithms for data classification on IBM quantum hardware: a quantum distance classifier (qDS) and a simplified quantum-kernel support vector machine (sqKSVM). We utilize these different methods using the linear time quantum data encoding technique ([Formula: see text]) for embedding classical data into quantum states and estimating the inner product on the 15-qubit IBMQ Melbourne quantum computer. We match the predictive performance of our QML approaches with prior QML methods and with their classical counterpart algorithms for three open-access clinical datasets. Our results imply that the qDS in small sample and feature count datasets outperforms kernel-based methods. In contrast, quantum kernel approaches outperform qDS in high sample and feature count datasets. We demonstrate that the [Formula: see text] encoding increases predictive performance with up to + 2% area under the receiver operator characteristics curve across all quantum machine learning approaches, thus, making it ideal for machine learning tasks executed in Noisy Intermediate Scale Quantum computers.

SELECTION OF CITATIONS
SEARCH DETAIL