Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
PLoS Genet ; 17(12): e1009982, 2021 12.
Article in English | MEDLINE | ID: mdl-34928956

ABSTRACT

Sonic Hedgehog/GLI3 signaling is critical in regulating digit number, such that Gli3-deficiency results in polydactyly and Shh-deficiency leads to digit number reductions. SHH/GLI3 signaling regulates cell cycle factors controlling mesenchymal cell proliferation, while simultaneously regulating Grem1 to coordinate BMP-induced chondrogenesis. SHH/GLI3 signaling also coordinates the expression of additional genes, however their importance in digit formation remain unknown. Utilizing genetic and molecular approaches, we identified HES1 as a downstream modifier of the SHH/GLI signaling axis capable of inducing preaxial polydactyly (PPD), required for Gli3-deficient PPD, and capable of overcoming digit number constraints of Shh-deficiency. Our data indicate that HES1, a direct SHH/GLI signaling target, induces mesenchymal cell proliferation via suppression of Cdkn1b, while inhibiting chondrogenic genes and the anterior autopod boundary regulator, Pax9. These findings establish HES1 as a critical downstream effector of SHH/GLI3 signaling in the development of PPD.


Subject(s)
Hedgehog Proteins/genetics , Nerve Tissue Proteins/genetics , PAX9 Transcription Factor/genetics , Polydactyly/genetics , Thumb/abnormalities , Transcription Factor HES-1/genetics , Zinc Finger Protein Gli3/genetics , Animals , Cell Division/genetics , Cell Proliferation/genetics , Chondrogenesis/genetics , Chromatin/genetics , Cyclin-Dependent Kinase Inhibitor p27/genetics , Disease Models, Animal , Humans , Limb Buds/growth & development , Limb Buds/metabolism , Mesoderm/growth & development , Mice , Polydactyly/pathology , Thumb/pathology
2.
J Shoulder Elbow Surg ; 33(4): e215-e222, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37757906

ABSTRACT

BACKGROUND: Fatty accumulation in rotator cuff muscles has been associated with shoulder dysfunction, risk of repair failure, and poor postoperative outcomes. This study sought to assess risk factors associated with true fatty accumulation based on histologic analysis and determine whether preoperative function directly correlated with this fatty rotator cuff accumulation. METHODS: Supraspinatus muscle biopsy specimens obtained prospectively from patients undergoing arthroscopic rotator cuff repair were stained with LipidTOX to quantify lipid accumulation. Two-step cluster analysis with Goutallier classification was used to define the fatty and non-fatty rotator cuff groups. We further performed a receiver operating characteristic curve analysis to confirm the group cutoff values. RESULTS: In total, 51 patients (aged 60.1 ± 10.5 years) were included. There were 19 high-grade partial tears, 10 small tears, 7 medium tears, 10 large tears, and 5 massive tears. Both cluster and receiver operating characteristic curve analyses yielded a cutoff value of 30% LipidTOX/4',6-diamidino-2-phenylindole (DAPI) separating the fatty vs. non-fatty groups. In the univariate analysis, patients with fatty rotator cuffs were aged 63.2 years on average compared with 59.7 years in the non-fatty group (P = .038). Female patients made up 57.1% of the fatty cohort, which was statistically higher than the non-fatty group (P = .042). Massive and large tears were more likely to occur in the fatty group (P = .005). In the multivariate analysis, full tendon tears had the largest predictive status of falling into the fatty group (odds ratio, 15.4; P = .008), followed by female sex (odds ratio, 4.9; P = .036). Patients in the fatty group had significantly higher American Shoulder and Elbow Surgeons scores (P = .048) and lower visual analog scale scores (P = .002). DISCUSSION AND CONCLUSION: This prospective histologic assessment revealed that full-thickness rotator cuff tears and female sex were the largest risk factors for intracellular lipid accumulation. Although tear size correlated with fatty accumulation, the sex disparity is a noteworthy finding that warrants further research.


Subject(s)
Rotator Cuff Injuries , Rotator Cuff , Humans , Female , Rotator Cuff/surgery , Rotator Cuff/pathology , Prospective Studies , Retrospective Studies , Treatment Outcome , Magnetic Resonance Imaging , Rotator Cuff Injuries/surgery , Rotator Cuff Injuries/pathology , Rupture/surgery , Arthroscopy , Lipids
3.
Cell ; 133(2): 340-53, 2008 Apr 18.
Article in English | MEDLINE | ID: mdl-18423204

ABSTRACT

Canonical Wnt signaling critically regulates cell fate and proliferation in development and disease. Nuclear localization of beta-catenin is indispensable for canonical Wnt signaling; however, the mechanisms governing beta-catenin nuclear localization are not well understood. Here we demonstrate that nuclear accumulation of beta-catenin in response to Wnt requires Rac1 activation. The role of Rac1 depends on phosphorylation of beta-catenin at Ser191 and Ser605, which is mediated by JNK2 kinase. Mutations of these residues significantly affect Wnt-induced beta-catenin nuclear accumulation. Genetic ablation of Rac1 in the mouse embryonic limb bud ectoderm disrupts canonical Wnt signaling and phenocopies deletion of beta-catenin in causing severe truncations of the limb. Finally, Rac1 interacts genetically with beta-catenin and Dkk1 in controlling limb outgrowth. Together these results uncover Rac1 activation and subsequent beta-catenin phosphorylation as a hitherto uncharacterized mechanism controlling canonical Wnt signaling and may provide additional targets for therapeutic intervention of this important pathway.


Subject(s)
Cell Nucleus/chemistry , Neuropeptides/metabolism , Signal Transduction , beta Catenin/analysis , rac GTP-Binding Proteins/metabolism , Animals , Cell Line , Cell Nucleus/metabolism , Embryo, Mammalian/metabolism , Extremities/embryology , Intercellular Signaling Peptides and Proteins/metabolism , Mice , Mitogen-Activated Protein Kinase 9/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Wnt Proteins/metabolism , Wnt3 Protein , beta Catenin/genetics , beta Catenin/metabolism , rac1 GTP-Binding Protein , rho GTP-Binding Proteins/metabolism
4.
PLoS Genet ; 15(10): e1008096, 2019 10.
Article in English | MEDLINE | ID: mdl-31652254

ABSTRACT

Degenerative changes of the intervertebral disc (IVD) are a leading cause of disability affecting humans worldwide and has been attributed primarily to trauma and the accumulation of pathology during aging. While genetic defects have also been associated with disc degeneration, the precise mechanisms driving the initiation and progression of disease have remained elusive due to a paucity of genetic animal models. Here, we discuss a novel conditional mouse genetic model of endplate-oriented disc herniations in adult mice. Using conditional mouse genetics, we show increased mechanical stiffness and reveal dysregulation of typical gene expression profiles of the IVD in adhesion G-protein coupled receptor G6 (Adgrg6) mutant mice prior to the onset of endplate-oriented disc herniations in adult mice. We observed increased STAT3 activation prior to IVD defects and go on to demonstrate that treatment of Adgrg6 conditional mutant mice with a small molecule inhibitor of STAT3 activation ameliorates endplate-oriented herniations. These findings establish ADGRG6 and STAT3 as novel regulators of IVD endplate and growth plate integrity in the mouse, and implicate ADGRG6/STAT3 signaling as promising therapeutic targets for endplate-oriented disc degeneration.


Subject(s)
Intervertebral Disc Degeneration/genetics , Intervertebral Disc Displacement/genetics , Receptors, G-Protein-Coupled/genetics , STAT3 Transcription Factor/genetics , Animals , Disease Models, Animal , Disease Progression , Growth Plate , Humans , Intervertebral Disc/growth & development , Intervertebral Disc/pathology , Intervertebral Disc Degeneration/physiopathology , Intervertebral Disc Displacement/physiopathology , Mice , Mutation , Signal Transduction
5.
Development ; 145(13)2018 07 09.
Article in English | MEDLINE | ID: mdl-29899135

ABSTRACT

During enchondral ossification, mesenchymal cells express genes regulating the intracellular biosynthesis of cholesterol and lipids. Here, we have investigated conditional deletion of Scap or of Insig1 and Insig2 (Scap inhibits intracellular biosynthesis and Insig proteins activate intracellular biosynthesis). Mesenchymal condensation and chondrogenesis was disrupted in mice lacking Scap in mesenchymal progenitors, whereas mice lacking the Insig genes in mesenchymal progenitors had short limbs, but normal chondrogenesis. Mice lacking Scap in chondrocytes showed severe dwarfism, with ectopic hypertrophic cells, whereas deletion of Insig genes in chondrocytes caused a mild dwarfism and shortening of the hypertrophic zone. In vitro studies showed that intracellular cholesterol in chondrocytes can derive from exogenous and endogenous sources, but that exogenous sources cannot completely overcome the phenotypic effect of Scap deficiency. Genes encoding cholesterol biosynthetic proteins are regulated by Hedgehog (Hh) signaling, and Hh signaling is also regulated by intracellular cholesterol in chondrocytes, suggesting a feedback loop in chondrocyte differentiation. Precise regulation of intracellular biosynthesis is required for chondrocyte homeostasis and long bone growth, and these data support pharmacological modulation of cholesterol biosynthesis as a therapy for select cartilage pathologies.


Subject(s)
Bone Development/physiology , Cholesterol/biosynthesis , Chondrocytes/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Mesenchymal Stem Cells/metabolism , Animals , Cell Differentiation/physiology , Cholesterol/genetics , Chondrocytes/cytology , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , Mesenchymal Stem Cells/cytology , Mice , Mice, Knockout , Signal Transduction/physiology
6.
Magn Reson Med ; 84(2): 908-919, 2020 08.
Article in English | MEDLINE | ID: mdl-31962373

ABSTRACT

PURPOSE: To evaluate the complex fiber orientations and 3D collagen fiber network of knee joint connective tissues, including ligaments, muscle, articular cartilage, and meniscus using high spatial and angular resolution diffusion imaging. METHODS: Two rat knee joints were scanned using a modified 3D diffusion-weighted spin echo pulse sequence with the isotropic spatial resolution of 45 µm at 9.4T. The b values varied from 250 to 1250 s/mm2 with 31 diffusion encoding directions for 1 rat knee. The b value was fixed to 1000 s/mm2 with 147 diffusion encoding directions for the second knee. Both the diffusion tensor imaging (DTI) model and generalized Q-sampling imaging (GQI) method were used to investigate the fiber orientation distributions and tractography with the validation of polarized light microscopy. RESULTS: To better resolve the crossing fibers, the b value should be great than or equal to 1000 s/mm2 . The tractography results were comparable between the DTI model and GQI method in ligament and muscle. However, the tractography exhibited apparent difference between DTI and GQI in connective tissues with more complex collagen fibers network, such as cartilage and meniscus. In articular cartilage, there were numerous crossing fibers found in superficial zone and transitional zone. Tractography generated with GQI also resulted in more intact tracts in articular cartilage than DTI. CONCLUSION: High-resolution diffusion imaging with GQI method can trace the complex collagen fiber orientations and architectures of the knee joint at microscopic resolution.


Subject(s)
Cartilage, Articular , Diffusion Tensor Imaging , Animals , Cartilage, Articular/diagnostic imaging , Collagen , Diffusion Magnetic Resonance Imaging , Image Processing, Computer-Assisted , Knee Joint/diagnostic imaging , Rats
7.
Magn Reson Med ; 81(6): 3775-3786, 2019 06.
Article in English | MEDLINE | ID: mdl-30671998

ABSTRACT

PURPOSE: To evaluate whole knee joint tractography, including articular cartilage, ligaments, meniscus, and growth plate using diffusion tensor imaging (DTI) at microscopic resolution. METHODS: Three rat knee joints were scanned using a modified 3D diffusion-weighted spin echo pulse sequence with 90- and 45-µm isotropic spatial resolution at 9.4T. The b values varied from 250 to 1250 s/mm2 with 4 times undersampling in phase directions. Fractional anisotropy (FA) and mean diffusivity (MD) were compared at different spatial resolution and b values. Tractography was evaluated at multiple b values and angular resolutions in different connective tissues, and compared with conventional histology. The mean tract length and tract volume in various types of tissues were also quantified. RESULTS: DTI metrics (FA and MD) showed consistent quantitative results at 90- and 45-µm isotropic spatial resolutions. Tractography of various connective tissues was found to be sensitive to the spatial resolution, angular resolution, and diffusion weightings. Higher spatial resolution (45 µm) supported tracking the cartilage collagen fiber tracts from the superficial zone to the deep zone, in a continuous and smooth progression in the transitional zone. Fiber length and fiber volume in the growth plate were strongly dependent on angular resolution and b values, whereas tractography in ligaments was found to be less dependent on spatial resolution. CONCLUSION: High spatial and angular resolution DTI and diffusion tractography can be valuable for knee joint research because of its visualization capacity for collagen fiber orientations and quantitative evaluation of tissue's microscopic properties.


Subject(s)
Anterior Cruciate Ligament/diagnostic imaging , Cartilage, Articular/diagnostic imaging , Diffusion Tensor Imaging/methods , Image Processing, Computer-Assisted/methods , Stifle/diagnostic imaging , Animals , Anisotropy , Rats
8.
J Cell Physiol ; 233(7): 5431-5440, 2018 07.
Article in English | MEDLINE | ID: mdl-30025440

ABSTRACT

Intervertebral disc (IVD) degeneration is the major cause of back pain. Notch signaling is activated in annulus fibrosus (AF) and nucleus pulposus (NP) tissues of degenerated IVDs, and induced by IL1-ß and TNF-α in NP cells. However, the role of Notch activatin in the pathogenesis of IVD degeneration is largely unknown. In this study, we overexpressed the Notch1 intracellular domain (NICD1) in AF, NP, and chondrogenic ATDC5 cells via adenoviruses. Overexpression of NICD1 activated transcription of Notch signaling target genes in AF, NP, and ATDC5 cells, and caused cell type-specific effects on expression of matrix anabolic and catabolic genes. Activation of Notch signaling promoted expression of matrix catabolic genes and inhibited expression of matrix anabolic genes in both AF and ATDC5 cells, whereas its activation suppressed expression of matrix catabolic genes (including Mmp3, Mmp13, Adamts4, and Adamts5) and attenuated TNF-α and inflammatory macrophage-induced Mmp13 expression in NP cells. Consistently, sustained activation of Notch1 signaling in postnatal IVDs in mice severely disrupted growth plate and endplate cartilage tissues, but did not overly affect NP tissues. Together, these data indicated that activation of Notch signaling exerted differential and cell type-specific effects in intervertebral discs, and specific Notch signaling regulation may be considered during the treatment of IVD degeneration.


Subject(s)
Annulus Fibrosus/metabolism , Intervertebral Disc Degeneration/genetics , Intervertebral Disc/metabolism , Nucleus Pulposus/metabolism , Receptor, Notch1/metabolism , Animals , Annulus Fibrosus/pathology , Cell Lineage/genetics , Chondrogenesis/genetics , Gene Expression Regulation/genetics , Humans , Interleukin-1beta/genetics , Intervertebral Disc/pathology , Intervertebral Disc Degeneration/pathology , Macrophages/metabolism , Mice , Nucleus Pulposus/pathology , Rats , Receptors, Notch/genetics , Signal Transduction , Tumor Necrosis Factor-alpha/genetics
9.
J Cell Sci ; 129(11): 2145-55, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27160681

ABSTRACT

RBPjκ-dependent Notch signaling regulates multiple processes during cartilage development, including chondrogenesis, chondrocyte hypertrophy and cartilage matrix catabolism. Select members of the HES- and HEY-families of transcription factors are recognized Notch signaling targets that mediate specific aspects of Notch function during development. However, whether particular HES and HEY factors play any role(s) in the processes during cartilage development is unknown. Here, for the first time, we have developed unique in vivo genetic models and in vitro approaches demonstrating that the RBPjκ-dependent Notch targets HES1 and HES5 suppress chondrogenesis and promote the onset of chondrocyte hypertrophy. HES1 and HES5 might have some overlapping function in these processes, although only HES5 directly regulates Sox9 transcription to coordinate cartilage development. HEY1 and HEYL play no discernable role in regulating chondrogenesis or chondrocyte hypertrophy, whereas none of the HES or HEY factors appear to mediate Notch regulation of cartilage matrix catabolism. This work identifies important candidates that might function as downstream mediators of Notch signaling both during normal skeletal development and in Notch-related skeletal disorders.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Cartilage/embryology , Cartilage/metabolism , Chondrocytes/metabolism , Chondrocytes/pathology , Chondrogenesis , Repressor Proteins/metabolism , Transcription Factor HES-1/metabolism , Animals , Bone Development/genetics , Cell Differentiation , Cell Proliferation , Chondrogenesis/genetics , Gene Expression Regulation, Developmental , Hypertrophy , Mesenchymal Stem Cells/metabolism , Mice , SOX9 Transcription Factor/metabolism , Transcription Factor HES-1/genetics , Transcription, Genetic
10.
J Cell Sci ; 126(Pt 24): 5704-13, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-24144697

ABSTRACT

TAK1 is a MAP3K that mediates non-canonical TGF-ß and BMP signaling. During the embryonic period, TAK1 is essential for cartilage and joint development as deletion of Tak1 in chondro-osteo progenitor cells leads to severe chondrodysplasia with defects in both chondrocyte proliferation and maturation. We have investigated the role of TAK1 in committed chondrocytes during early postnatal development. Using the Col2a1-CreER(T2); Tak1(f/f) mouse model, we induced deletion of Tak1 at postnatal day 7 and characterized the skeletal phenotypes of these mice at 1 and 3 months of age. Mice with chondrocyte-specific Tak1 deletion exhibited severe growth retardation and reduced proteoglycan and type II collagen content in the extracellular matrix of the articular cartilage. We found reduced Col2a1 and Acan expression, but increased Mmp13 and Adamts5 expression, in Tak1-deficient chondrocytes along with reduced expression of the SOX trio of transcription factors, SOX9, SOX5 and SOX6. In vitro, BMP2 stimulated Sox9 gene expression and Sox9 promoter activity. These effects were reduced; however, following Tak1 deletion or treatment with a TAK1 kinase inhibitor. TAK1 affects both canonical and non-canonical BMP signal transduction and we found that both of these pathways contribute to BMP2-mediated Sox9 promoter activation. Additionally, we found that ATF2 directly binds the Sox9 promoter in response to BMP signaling and that this effect is dependent upon TAK1 kinase activity. These novel findings establish that TAK1 contributes to BMP2-mediated Sox9 gene expression and is essential for the postnatal development of normal growth plate and articular cartilages.


Subject(s)
Cartilage, Articular/metabolism , Chondrocytes/metabolism , Growth Plate/metabolism , MAP Kinase Kinase Kinases/physiology , SOX9 Transcription Factor/metabolism , Activating Transcription Factor 2/metabolism , Animals , Bone Morphogenetic Protein 2/physiology , Cartilage, Articular/cytology , Cartilage, Articular/growth & development , Cell Proliferation , Cells, Cultured , Extracellular Matrix/metabolism , Gene Deletion , Gene Expression Regulation , Growth Plate/growth & development , Mice , Mice, Transgenic , Promoter Regions, Genetic , Protein Binding , Proteoglycans/metabolism , SOX9 Transcription Factor/genetics
11.
Development ; 139(6): 1198-212, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22354840

ABSTRACT

The Notch signaling pathway has emerged as an important regulator of endochondral bone formation. Although recent studies have examined the role of Notch in mesenchymal and chondro-osteo progenitor cell populations, there has yet to be a true examination of Notch signaling specifically within developing and committed chondrocytes, or a determination of whether cartilage and bone formation are regulated via RBPjκ-dependent or -independent Notch signaling mechanisms. To develop a complete understanding of Notch signaling during cartilage and bone development we generated and compared general Notch gain-of-function (Rosa-NICD(f/+)), RBPjκ-deficient (Rbpjκ(f/f)), and RBPjκ-deficient Notch gain-of-function (Rosa-NICD(f/+);Rbpjκ(f/f)) conditional mutant mice, where activation or deletion of floxed alleles were specifically targeted to mesenchymal progenitors (Prx1Cre) or committed chondrocytes (inducible Col2Cre(ERT2)). These data demonstrate, for the first time, that Notch regulation of chondrocyte maturation is solely mediated via the RBPjκ-dependent pathway, and that the perichodrium or osteogenic lineage probably influences chondrocyte terminal maturation and turnover of the cartilage matrix. Our study further identifies the cartilage-specific RBPjκ-independent pathway as crucial for the proper regulation of chondrocyte proliferation, survival and columnar chondrocyte organization. Unexpectedly, the RBPjκ-independent Notch pathway was also identified as an important long-range cell non-autonomous regulator of perichondral bone formation and an important cartilage-derived signal required for coordinating chondrocyte and osteoblast differentiation during endochondral bone development. Finally, cartilage-specific RBPjκ-independent Notch signaling likely regulates Ihh responsiveness during cartilage and bone development.


Subject(s)
Cartilage/embryology , Chondrogenesis , Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics , Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism , Osteogenesis , Receptors, Notch/metabolism , Animals , Bone and Bones/embryology , Cartilage/metabolism , Cell Differentiation , Cell Proliferation , Cells, Cultured , Chondrocytes/cytology , Chondrocytes/metabolism , Gene Expression Regulation, Developmental , Immunoglobulin J Recombination Signal Sequence-Binding Protein/deficiency , Mesenchymal Stem Cells , Mice , Mice, Transgenic , Osteogenesis/genetics , Receptors, Notch/genetics , Signal Transduction
12.
Connect Tissue Res ; 55(2): 80-8, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24409815

ABSTRACT

Abstract An interdisciplinary and international group of clinicians and scientists gathered in Philadelphia, PA, to attend the fourth International Research Conference on Multiple Hereditary Exostoses (MHE), a rare and severe skeletal disorder. MHE is largely caused by autosomal dominant mutations in EXT1 or EXT2, genes encoding Golgi-associated glycosyltransferases responsible for heparan sulfate (HS) synthesis. HS chains are key constituents of cell surface- and extracellular matrix-associated proteoglycans, which are known regulators of skeletal development. MHE affected individuals are HS-deficient, can display skeletal growth retardation and deformities, and consistently develop benign, cartilage-capped bony outgrowths (termed exostoses or osteochondromas) near the growth plates of many skeletal elements. Nearly 2% of patients will have their exostoses progress to malignancy, becoming peripheral chondrosarcomas. Current treatments are limited to the surgical removal of symptomatic exostoses. No definitive treatments have been established to inhibit further formation and growth of exostoses, prevent transition to malignancy, or address other medical problems experienced by MHE patients, including chronic pain. Thus, the goals of the Conference were to assess our current understanding of MHE pathogenesis, identify key gaps in information, envision future therapeutic strategies and discuss ways to test and implement them. This report provides an assessment of the exciting and promising findings in MHE and related fields presented at the Conference and a discussion of the future MHE research directions. The Conference underlined the critical usefulness of gathering experts in several research fields to forge new alliances and identify cross-fertilization areas to benefit both basic and translational biomedical research on the skeleton.


Subject(s)
Biomedical Research , Bone Neoplasms , Chondrosarcoma , Exostoses, Multiple Hereditary , Animals , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Bone Neoplasms/physiopathology , Chondrosarcoma/genetics , Chondrosarcoma/metabolism , Chondrosarcoma/pathology , Chondrosarcoma/physiopathology , Congresses as Topic , Exostoses, Multiple Hereditary/genetics , Exostoses, Multiple Hereditary/metabolism , Exostoses, Multiple Hereditary/pathology , Exostoses, Multiple Hereditary/physiopathology , Growth Disorders/genetics , Growth Disorders/metabolism , Growth Disorders/pathology , Growth Disorders/physiopathology , Humans , N-Acetylglucosaminyltransferases/genetics , N-Acetylglucosaminyltransferases/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Philadelphia
13.
Arthritis Rheum ; 65(10): 2623-33, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23839930

ABSTRACT

OBJECTIVE: Osteoarthritis (OA) is a degenerative disease resulting in severe joint cartilage destruction and disability. While the mechanisms underlying the development and progression of OA are poorly understood, gene mutations have been identified within cartilage-related signaling molecules, implicating impaired cell signaling in OA and joint disease. The Notch pathway has recently been identified as a crucial regulator of growth plate cartilage development, and components are expressed in joint tissue. This study was undertaken to investigate a novel role for Notch signaling in joint cartilage development, maintenance, and the pathogenesis of joint disease in a mouse model. METHODS: We performed the first mouse gene study in which the core Notch signaling component, RBP-Jκ, was tissue specifically deleted within joints. The Prx1Cre transgene removed Rbpjk loxP-flanked alleles in mesenchymal joint precursor cells, while the Col2Cre(ERT2) transgene specifically deleted Rbpjk in postnatal chondrocytes. Murine articular chondrocyte cultures were also used to examine Notch regulation of gene expression. RESULTS: Loss of Notch signaling in mesenchymal joint precursor cells did not affect embryonic joint development in mice, but rather, resulted in an early, progressive OA-like pathology. Additionally, partial loss of Notch signaling in murine postnatal cartilage resulted in progressive joint cartilage degeneration and an age-related OA-like pathology. Inhibition of Notch signaling altered the expression of the extracellular matrix (ECM)-related factors type II collagen (COL2A1), proteoglycan 4, COL10A1, matrix metalloproteinase 13, and ADAMTS. CONCLUSION: Our findings indicate that the RBP-Jκ-dependent Notch pathway is a novel pathway involved in joint maintenance and articular cartilage homeostasis, a critical regulator of articular cartilage ECM-related molecules, and a potentially important therapeutic target for OA-like joint disease.


Subject(s)
Cartilage, Articular/physiology , Immunoglobulin J Recombination Signal Sequence-Binding Protein/physiology , Joints/physiology , Receptors, Notch/physiology , Signal Transduction/physiology , Animals , Cells, Cultured , Collagen Type I/genetics , Collagen Type I/physiology , Collagen Type I, alpha 1 Chain , Collagen Type II/genetics , Collagen Type II/physiology , Homeostasis/physiology , Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics , Mice , Mice, Inbred Strains , Mice, Transgenic , Models, Animal , Osteoarthritis/physiopathology
14.
Genesis ; 51(9): 667-75, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23775847

ABSTRACT

The troponin complex, which consists of three regulatory proteins (troponin C, troponin I, and troponin T), is known to regulate muscle contraction in skeletal and cardiac muscle, but its role in smooth muscle remains controversial. Troponin T3 (TnnT3) is a fast skeletal muscle troponin believed to be expressed only in skeletal muscle cells. To determine the in vivo function and tissue-specific expression of Tnnt3, we obtained the heterozygous Tnnt3+/flox/lacZ mice from Knockout Mouse Project (KOMP) Repository. Tnnt3(lacZ/+) mice are smaller than their WT littermates throughout development but do not display any gross phenotypes. Tnnt3(lacZ/lacZ) embryos are smaller than heterozygotes and die shortly after birth. Histology revealed hemorrhagic tissue in Tnnt3(lacZ/lacZ) liver and kidney, which was not present in Tnnt3(lacZ/+) or WT, but no other gross tissue abnormalities. X-gal staining for Tnnt3 promoter-driven lacZ transgene expression revealed positive staining in skeletal muscle and diaphragm and smooth muscle cells located in the aorta, bladder, and bronchus. Collectively, these findings suggest that troponins are expressed in smooth muscle and are required for normal growth and breathing for postnatal survival. Moreover, future studies with this mouse model can explore TnnT3 function in adult muscle function using the conditional-inducible gene deletion approach


Subject(s)
Muscle, Smooth/metabolism , Troponin T/metabolism , Animals , Kidney/abnormalities , Kidney/growth & development , Liver/abnormalities , Liver/growth & development , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle, Skeletal/growth & development , Muscle, Skeletal/metabolism , Muscle, Smooth/growth & development , Phenotype , Transgenes , Troponin , Troponin T/genetics
15.
J Cell Sci ; 124(Pt 20): 3428-40, 2011 Oct 15.
Article in English | MEDLINE | ID: mdl-21984813

ABSTRACT

The BMP signaling pathway has a crucial role in chondrocyte proliferation and maturation during endochondral bone development. To investigate the specific function of the Bmp2 and Bmp4 genes in growth plate chondrocytes during cartilage development, we generated chondrocyte-specific Bmp2 and Bmp4 conditional knockout (cKO) mice and Bmp2,Bmp4 double knockout (dKO) mice. We found that deletion of Bmp2 and Bmp4 genes or the Bmp2 gene alone results in a severe chondrodysplasia phenotype, whereas deletion of the Bmp4 gene alone produces a minor cartilage phenotype. Both dKO and Bmp2 cKO mice exhibit severe disorganization of chondrocytes within the growth plate region and display profound defects in chondrocyte proliferation, differentiation and apoptosis. To understand the mechanism by which BMP2 regulates these processes, we explored the specific relationship between BMP2 and Runx2, a key regulator of chondrocyte differentiation. We found that BMP2 induces Runx2 expression at both the transcriptional and post-transcriptional levels. BMP2 enhances Runx2 protein levels through inhibition of CDK4 and subsequent prevention of Runx2 ubiquitylation and proteasomal degradation. Our studies provide novel insights into the genetic control and molecular mechanism of BMP signaling during cartilage development.


Subject(s)
Bone Development , Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Protein 4/metabolism , Chondrocytes/metabolism , Core Binding Factor Alpha 1 Subunit/metabolism , Animals , Apoptosis/genetics , Bone Development/genetics , Bone Morphogenetic Protein 2/genetics , Bone Morphogenetic Protein 4/genetics , Cell Differentiation/genetics , Cell Growth Processes/genetics , Cells, Cultured , Chondrocytes/pathology , Core Binding Factor Alpha 1 Subunit/genetics , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 4/metabolism , Gene Expression Regulation/genetics , Growth Plate/pathology , Mice , Mice, Knockout , Osteochondrodysplasias/genetics , Protein Processing, Post-Translational , Signal Transduction
16.
Development ; 137(9): 1461-71, 2010 May.
Article in English | MEDLINE | ID: mdl-20335360

ABSTRACT

The Notch pathway has recently been implicated in mesenchymal progenitor cell (MPC) differentiation from bone marrow-derived progenitors. However, whether Notch regulates MPC differentiation in an RBPjkappa-dependent manner, specifies a particular MPC cell fate, regulates MPC proliferation and differentiation during early skeletal development or controls specific Notch target genes to regulate these processes remains unclear. To determine the exact role and mode of action for the Notch pathway in MPCs during skeletal development, we analyzed tissue-specific loss-of-function (Prx1Cre; Rbpjk(f/f)), gain-of-function (Prx1Cre; Rosa-NICD(f/+)) and RBPjkappa-independent Notch gain-of-function (Prx1Cre; Rosa-NICD(f/+); Rbpjk(f/f)) mice for defects in MPC proliferation and differentiation. These data demonstrate for the first time that the RBPjkappa-dependent Notch signaling pathway is a crucial regulator of MPC proliferation and differentiation during skeletal development. Our study also implicates the Notch pathway as a general suppressor of MPC differentiation that does not bias lineage allocation. Finally, Hes1 was identified as an RBPjkappa-dependent Notch target gene important for MPC maintenance and the suppression of in vitro chondrogenesis.


Subject(s)
Bone and Bones/cytology , Cell Differentiation/physiology , Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Receptors, Notch/metabolism , Signal Transduction/physiology , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/physiology , Blotting, Western , Bone and Bones/embryology , Cell Differentiation/genetics , Cell Proliferation , Cells, Cultured , Gene Expression Regulation, Developmental , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Homeodomain Proteins/physiology , Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics , Limb Buds/cytology , Limb Buds/embryology , Limb Buds/metabolism , Mice , Models, Biological , Receptors, Notch/genetics , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/genetics , Transcription Factor HES-1
17.
Biotechnol Bioeng ; 110(5): 1476-86, 2013 May.
Article in English | MEDLINE | ID: mdl-23239161

ABSTRACT

A major challenge in cartilage tissue engineering is the need to recreate the native tissue's anisotropic extracellular matrix structure. This anisotropy has important mechanical and biological consequences and could be crucial for integrative repair. Here, we report that hydrodynamic conditions that mimic the motion-induced flow fields in between the articular surfaces in the synovial joint induce the formation of a distinct superficial layer in tissue engineered cartilage hydrogels, with enhanced production of cartilage matrix proteoglycan and Type II collagen. Moreover, the flow stimulation at the surface induces the production of the surface zone protein Proteoglycan 4 (aka PRG4 or lubricin). Analysis of second harmonic generation signature of collagen in this superficial layer reveals a highly aligned fibrillar matrix that resembles the alignment pattern in native tissue's surface zone, suggesting that mimicking synovial fluid flow at the cartilage surface in hydrodynamic bioreactors could be key to creating engineered cartilage with superficial zone features.


Subject(s)
Tissue Engineering/methods , Animals , Bioreactors , Cartilage/cytology , Cartilage/metabolism , Chondrocytes/metabolism , Hydrodynamics , Hydrogels/chemistry , Proteoglycans/analysis , Proteoglycans/metabolism , Swine , Tissue Engineering/instrumentation
18.
Am J Sports Med ; 51(8): 1997-2004, 2023 07.
Article in English | MEDLINE | ID: mdl-37260272

ABSTRACT

BACKGROUND: Atrophy of the rotator cuff is a negative prognostic indicator after rotator cuff repair. Although full-thickness rotator cuff tears accompanied by tendon retraction are commonly associated with decreased muscle cross-sectional area (CSA) on magnetic resonance imaging (MRI), it is unclear whether this is accompanied by histologic atrophy of rotator cuff myofibers. PURPOSE: To evaluate the effect of supraspinatus tendon retraction and myofiber size on supraspinatus atrophy on MRI. STUDY DESIGN: Cross-sectional study; Level of evidence, 3. METHODS: Supraspinatus muscle biopsy specimens were obtained from consecutive patients undergoing arthroscopic shoulder surgery. Rotator cuff tears were classified according to size. Preoperative MRI was used to measure tendon retraction and CSA of the supraspinatus muscle in the Y-shaped view. The occupation ratio of the supraspinatus was calculated by dividing the supraspinatus CSA by the supraspinatus fossa CSA. Muscle biopsy specimens were examined using laminin to quantify myofiber CSA. The association between supraspinatus tear size and measures of histologic and MRI muscle atrophy were compared using standard statistical tests. Multivariable logistic regression analysis was used to identify independent predictors of muscle atrophy on MRI. RESULTS: A total of 38 patients were included: 8 with no tear, 14 with a partial-thickness tear, and 16 with a full-thickness tear. Increasing tear size was associated with greater distance of tendon retraction (P < .001), smaller mean histologic myofiber size (P = .004), lower mean supraspinatus CSA on MRI (P < .001), and lower occupation ratio: 0.73 (control), 0.66 (partial tear), 0.53 (small to medium full-thickness tear), and 0.38 (large to massive full-thickness) (P < .001). On Pearson correlation analysis, tendon retraction demonstrated strong correlation with occupation ratio (-0.725; P < .001) and weak correlation with myofiber size (-0.437; P = .006), while occupation ratio showed moderate correlation with myofiber size (0.593; P < .001). Multivariable linear regression analysis demonstrated that increasing tendon retraction (P < .001), age (P = .034), and smaller histologic myofiber CSA (P = .047) were independently associated with greater supraspinatus atrophy on MRI. CONCLUSION: Supraspinatus muscle atrophy appreciated on MRI is independently associated with patient age, tendon retraction, and atrophy of the supraspinatus myofibers at the histologic level.


Subject(s)
Rotator Cuff Injuries , Rotator Cuff , Humans , Rotator Cuff/diagnostic imaging , Rotator Cuff/surgery , Rotator Cuff/pathology , Rotator Cuff Injuries/diagnostic imaging , Rotator Cuff Injuries/surgery , Rotator Cuff Injuries/pathology , Cross-Sectional Studies , Muscular Atrophy/diagnostic imaging , Muscular Atrophy/pathology , Tendons/pathology , Rupture/pathology , Magnetic Resonance Imaging/methods
19.
Cells ; 12(7)2023 03 23.
Article in English | MEDLINE | ID: mdl-37048054

ABSTRACT

Paget's Disease of Bone (PDB) is a metabolic bone disease that is characterized by dysregulated osteoclast function leading to focal abnormalities of bone remodeling. It can lead to pain, fracture, and bone deformity. G protein-coupled receptor kinase 3 (GRK3) is an important negative regulator of G protein-coupled receptor (GPCR) signaling. GRK3 is known to regulate GPCR function in osteoblasts and preosteoblasts, but its regulatory function in osteoclasts is not well defined. Here, we report that Grk3 expression increases during osteoclast differentiation in both human and mouse primary cells and established cell lines. We also show that aged mice deficient in Grk3 develop bone lesions similar to those seen in human PDB and other Paget's Disease mouse models. We show that a deficiency in Grk3 expression enhances osteoclastogenesis in vitro and proliferation of hematopoietic osteoclast precursors in vivo but does not affect the osteoclast-mediated bone resorption function or cellular senescence pathway. Notably, we also observe decreased Grk3 expression in peripheral blood mononuclear cells of patients with PDB compared with age- and gender-matched healthy controls. Our data suggest that GRK3 has relevance to the regulation of osteoclast differentiation and that it may have relevance to the pathogenesis of PDB and other metabolic bone diseases associated with osteoclast activation.


Subject(s)
Bone Diseases, Metabolic , Bone Resorption , G-Protein-Coupled Receptor Kinase 3 , Osteitis Deformans , Animals , Humans , Mice , Bone Diseases, Metabolic/pathology , Bone Resorption/metabolism , Leukocytes, Mononuclear/metabolism , Osteitis Deformans/genetics , Osteitis Deformans/metabolism , Osteoclasts/metabolism , Osteogenesis , G-Protein-Coupled Receptor Kinase 3/genetics
20.
Sci Transl Med ; 15(724): eabo5217, 2023 11 29.
Article in English | MEDLINE | ID: mdl-38019933

ABSTRACT

Radiotherapy remains a common treatment modality for cancer despite skeletal complications. However, there are currently no effective treatments for radiation-induced bone loss, and the consequences of radiotherapy on skeletal progenitor cell (SPC) survival and function remain unclear. After radiation, leptin receptor-expressing cells, which include a population of SPCs, become localized to hypoxic regions of the bone and stabilize the transcription factor hypoxia-inducible factor-2α (HIF-2α), thus suggesting a role for HIF-2α in the skeletal response to radiation. Here, we conditionally knocked out HIF-2α in leptin receptor-expressing cells and their descendants in mice. Radiation therapy in littermate control mice reduced bone mass; however, HIF-2α conditional knockout mice maintained bone mass comparable to nonirradiated control animals. HIF-2α negatively regulated the number of SPCs, bone formation, and bone mineralization. To test whether blocking HIF-2α pharmacologically could reduce bone loss during radiation, we administered a selective HIF-2α inhibitor called PT2399 (a structural analog of which was recently FDA-approved) to wild-type mice before radiation exposure. Pharmacological inhibition of HIF-2α was sufficient to prevent radiation-induced bone loss in a single-limb irradiation mouse model. Given that ~90% of patients who receive a HIF-2α inhibitor develop anemia because of off-target effects, we developed a bone-targeting nanocarrier formulation to deliver the HIF-2α inhibitor to mouse bone, to increase on-target efficacy and reduce off-target toxicities. Nanocarrier-loaded PT2399 prevented radiation-induced bone loss in mice while reducing drug accumulation in the kidney. Targeted inhibition of HIF-2α may represent a therapeutic approach for protecting bone during radiation therapy.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Bone Diseases, Metabolic , Humans , Animals , Mice , Basic Helix-Loop-Helix Transcription Factors/physiology , Receptors, Leptin , Mice, Knockout , Stem Cells , Hypoxia-Inducible Factor 1, alpha Subunit
SELECTION OF CITATIONS
SEARCH DETAIL