ABSTRACT
Large-scale population analyses coupled with advances in technology have demonstrated that the human genome is more diverse than originally thought. To date, this diversity has largely been uncovered using short-read whole-genome sequencing. However, these short-read approaches fail to give a complete picture of a genome. They struggle to identify structural events, cannot access repetitive regions, and fail to resolve the human genome into haplotypes. Here, we describe an approach that retains long range information while maintaining the advantages of short reads. Starting from â¼1 ng of high molecular weight DNA, we produce barcoded short-read libraries. Novel informatic approaches allow for the barcoded short reads to be associated with their original long molecules producing a novel data type known as "Linked-Reads". This approach allows for simultaneous detection of small and large variants from a single library. In this manuscript, we show the advantages of Linked-Reads over standard short-read approaches for reference-based analysis. Linked-Reads allow mapping to 38 Mb of sequence not accessible to short reads, adding sequence in 423 difficult-to-sequence genes including disease-relevant genes STRC, SMN1, and SMN2 Both Linked-Read whole-genome and whole-exome sequencing identify complex structural variations, including balanced events and single exon deletions and duplications. Further, Linked-Reads extend the region of high-confidence calls by 68.9 Mb. The data presented here show that Linked-Reads provide a scalable approach for comprehensive genome analysis that is not possible using short reads alone.
Subject(s)
Genome-Wide Association Study/methods , Polymorphism, Genetic , Whole Genome Sequencing/methods , Cell Line , Genome, Human , Humans , Intercellular Signaling Peptides and Proteins , Membrane Proteins/genetics , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 2 Protein/geneticsABSTRACT
Nanoliter-sized droplet technology paired with digital PCR (ddPCR) holds promise for highly precise, absolute nucleic acid quantification. Our comparison of microRNA quantification by ddPCR and real-time PCR revealed greater precision (coefficients of variation decreased 37-86%) and improved day-to-day reproducibility (by a factor of seven) of ddPCR but with comparable sensitivity. When we applied ddPCR to serum microRNA biomarker analysis, this translated to superior diagnostic performance for identifying individuals with cancer.
Subject(s)
Biomarkers, Tumor/analysis , MicroRNAs/analysis , Real-Time Polymerase Chain Reaction/methods , Biomarkers, Tumor/blood , Humans , Limit of Detection , Male , MicroRNAs/blood , Prostatic Neoplasms/blood , Prostatic Neoplasms/diagnosis , Real-Time Polymerase Chain Reaction/standards , Reproducibility of Results , Sensitivity and SpecificityABSTRACT
We demonstrate a new approach to manipulate the selective emission in mixed electrogenerated chemiluminescence (ECL) systems, where subtle changes in co-reactant properties are exploited to control the relative electron-transfer processes of excitation and quenching. Two closely related tertiary-amine co-reactants, tri-n-propylamine and N,N-diisopropylethylamine, generate remarkably different emission profiles: one provides distinct green and red ECL from [Ir(ppy)3] (ppy=2-phenylpyridinato-C2,N) and a [Ru(bpy)3](2+) (bpy=2,2'-bipyridine) derivative at different applied potentials, whereas the other generates both emissions simultaneously across a wide potential range. These phenomena can be rationalized through the relative exergonicities of electron-transfer quenching of the excited states, in conjunction with the change in concentration of the quenchers over the applied potential range.
Subject(s)
2,2'-Dipyridyl/chemistry , Ethylamines/chemistry , Iridium/chemistry , Propylamines/chemistry , Ruthenium/chemistry , Color , Electrochemical Techniques , Luminescence , Luminescent MeasurementsABSTRACT
Two years ago, we described the first droplet digital PCR (ddPCR) system aimed at empowering all researchers with a tool that removes the substantial uncertainties associated with using the analogue standard, quantitative real-time PCR (qPCR). This system enabled TaqMan hydrolysis probe-based assays for the absolute quantification of nucleic acids. Due to significant advancements in droplet chemistry and buoyed by the multiple benefits associated with dye-based target detection, we have created a "second generation" ddPCR system compatible with both TaqMan-probe and DNA-binding dye detection chemistries. Herein, we describe the operating characteristics of DNA-binding dye based ddPCR and offer a side-by-side comparison to TaqMan probe detection. By partitioning each sample prior to thermal cycling, we demonstrate that it is now possible to use a DNA-binding dye for the quantification of multiple target species from a single reaction. The increased resolution associated with partitioning also made it possible to visualize and account for signals arising from nonspecific amplification products. We expect that the ability to combine the precision of ddPCR with both DNA-binding dye and TaqMan probe detection chemistries will further enable the research community to answer complex and diverse genetic questions.
Subject(s)
DNA/analysis , Fluorescent Dyes/chemistry , Multiplex Polymerase Chain Reaction/methods , DNA/metabolism , Fluorescent Dyes/metabolism , Humans , Protein Binding/physiology , Real-Time Polymerase Chain Reaction/methodsABSTRACT
The emission of light from the permanganate-oxalate reaction enables monitoring of intermediates not accessible through traditional spectrophotometric interrogation. Despite the inherent complexity of the underlying chemical reactions and equilibria, the emission intensity-time profile was characterized by a simple model combining previously independent minimalistic descriptions of chemiluminescence and autocatalysis. The generation of the electronically excited [Mn(II)]* emitter and the acceleration of the reaction even in the presence of high initial concentrations of Mn(II) (under conditions that preclude accumulation of colloidal Mn(IV)) provide new evidence for the reduction of manganese species by a reactive radical intermediate as a supplementary positive feedback loop to the formation of Mn(II).
ABSTRACT
Droplet digital polymerase chain reaction (ddPCR) is a new technology that was recently commercialized to enable the precise quantification of target nucleic acids in a sample. ddPCR measures absolute quantities by counting nucleic acid molecules encapsulated in discrete, volumetrically defined, water-in-oil droplet partitions. This novel ddPCR format offers a simple workflow capable of generating highly stable partitioning of DNA molecules. In this study, we assessed key performance parameters of the ddPCR system. A linear ddPCR response to DNA concentration was obtained from 0.16% through to 99.6% saturation in a 20,000 droplet assay corresponding to more than 4 orders of magnitude of target DNA copy number per ddPCR. Analysis of simplex and duplex assays targeting two distinct loci in the Lambda DNA genome using the ddPCR platform agreed, within their expanded uncertainties, with values obtained using a lower density microfluidic chamber based digital PCR (cdPCR). A relative expanded uncertainty under 5% was achieved for copy number concentration using ddPCR. This level of uncertainty is much lower than values typically observed for quantification of specific DNA target sequences using currently commercially available real-time and digital cdPCR technologies.
Subject(s)
Bacteriophage lambda/genetics , DNA Copy Number Variations , DNA/genetics , High-Throughput Nucleotide Sequencing , Polymerase Chain Reaction , GenomeABSTRACT
Digital PCR enables the absolute quantitation of nucleic acids in a sample. The lack of scalable and practical technologies for digital PCR implementation has hampered the widespread adoption of this inherently powerful technique. Here we describe a high-throughput droplet digital PCR (ddPCR) system that enables processing of ~2 million PCR reactions using conventional TaqMan assays with a 96-well plate workflow. Three applications demonstrate that the massive partitioning afforded by our ddPCR system provides orders of magnitude more precision and sensitivity than real-time PCR. First, we show the accurate measurement of germline copy number variation. Second, for rare alleles, we show sensitive detection of mutant DNA in a 100,000-fold excess of wildtype background. Third, we demonstrate absolute quantitation of circulating fetal and maternal DNA from cell-free plasma. We anticipate this ddPCR system will allow researchers to explore complex genetic landscapes, discover and validate new disease associations, and define a new era of molecular diagnostics.
Subject(s)
DNA/genetics , Gene Dosage/genetics , High-Throughput Nucleotide Sequencing , Polymerase Chain Reaction , HumansABSTRACT
The significant enhancement of acidic potassium permanganate chemiluminescence by Mn(II) results from the concomitant presence of permanganate and Mn(III) in the reagent solution, which enables rapid production of the excited Mn(II) emitter with a wide range of analytes. Furthermore, the key Mn(III) co-reactant can be quickly generated by reducing permanganate with sodium thiosulfate, instead of the slow (~24 h) equilibration required when Mn(ii) is used. The emission from reactions with analytes such as tyrosine and fenoterol was over two orders of magnitude more intense than with the traditional permanganate reagent.
ABSTRACT
Spectroscopic and synthetic methods have been exploited to deduce the mechanism for acidic potassium permanganate chemiluminescence. We have employed electron paramagnetic resonance (EPR) spectroscopy with a continuous flow assembly to monitor the formation of radical intermediates in real time generated from substrate oxidation by manganese(VII). These transient species react with manganese(III) in solution to produce the previously characterized manganese(II)* emission source. Using UV-vis, EPR, attenuated total reflection (ATR)-FT-IR, and chemiluminescence spectroscopies, we have established that there are two distinct enhancement mechanisms that in combination afford a 50-fold increase in emission intensity when the reaction is conducted in the presence of phosphate oligomers. In addition to preventing disproportionation of the manganese(III) precursor, the phosphate oligomers form protective "cagelike" structures around the manganese(II)* emitter, thus preventing nonradiative relaxation pathways.
ABSTRACT
Manganese(II) salts catalyze the chemiluminescent oxidation of organic compounds with acidic potassium permanganate. The formation of insoluble manganese(IV) species from the reaction between manganese(II) and permanganate can be prevented with sodium polyphosphate, and therefore, relatively high concentrations of the catalyst can be added to the reagent before the light-producing reaction is initiated. The rapid and intense emissions from these manganese(II) catalyzed chemiluminescence reactions provide highly sensitive detection and greater compatibility with liquid chromatography.
ABSTRACT
Electron paramagnetic resonance spectroscopy has afforded the identification of a much postulated 1,4-dioxy biradical that occurs within the light producing pathway of peroxyoxalate chemiluminescence.
Subject(s)
Heterocyclic Compounds/chemistry , Electron Spin Resonance Spectroscopy/methods , Free Radicals/chemistry , Heterocyclic Compounds, 1-Ring , Indicators and Reagents/chemistry , Luminescence , Oxidation-ReductionABSTRACT
Characterizing the transcriptome of individual cells is fundamental to understanding complex biological systems. We describe a droplet-based system that enables 3' mRNA counting of tens of thousands of single cells per sample. Cell encapsulation, of up to 8 samples at a time, takes place in â¼6 min, with â¼50% cell capture efficiency. To demonstrate the system's technical performance, we collected transcriptome data from â¼250k single cells across 29 samples. We validated the sensitivity of the system and its ability to detect rare populations using cell lines and synthetic RNAs. We profiled 68k peripheral blood mononuclear cells to demonstrate the system's ability to characterize large immune populations. Finally, we used sequence variation in the transcriptome data to determine host and donor chimerism at single-cell resolution from bone marrow mononuclear cells isolated from transplant patients.
Subject(s)
Leukocytes, Mononuclear/metabolism , Transcriptome , Cell Line , Female , Humans , Leukocytes, Mononuclear/chemistry , Male , RNA, Messenger/genetics , RNA, Messenger/metabolism , Single-Cell AnalysisABSTRACT
Haplotyping of human chromosomes is a prerequisite for cataloguing the full repertoire of genetic variation. We present a microfluidics-based, linked-read sequencing technology that can phase and haplotype germline and cancer genomes using nanograms of input DNA. This high-throughput platform prepares barcoded libraries for short-read sequencing and computationally reconstructs long-range haplotype and structural variant information. We generate haplotype blocks in a nuclear trio that are concordant with expected inheritance patterns and phase a set of structural variants. We also resolve the structure of the EML4-ALK gene fusion in the NCI-H2228 cancer cell line using phased exome sequencing. Finally, we assign genetic aberrations to specific megabase-scale haplotypes generated from whole-genome sequencing of a primary colorectal adenocarcinoma. This approach resolves haplotype information using up to 100 times less genomic DNA than some methods and enables the accurate detection of structural variants.
Subject(s)
Haplotypes/genetics , High-Throughput Nucleotide Sequencing/methods , Neoplasms/genetics , Sequence Analysis, DNA/methods , DNA/genetics , Genome, Human , Genomic Structural Variation , Germ Cells , Humans , Nucleic Acid Conformation , Oncogene Proteins, Fusion/genetics , Polymorphism, Single NucleotideABSTRACT
A chemically initiated adaptation of the classic [Ru(bipy)(3)](2+)/oxalate electrochemiluminescence coreactant system has revealed the elusive radical intermediates of the light-producing pathway. Oxalyl (HC(2)O(4)Ë) and hydroxyformyl (HCO(2)Ë) radicals have been captured on a quartz surface and characterised using EPR spectroscopy.
ABSTRACT
Examination of the chemiluminescence reactions of dihydroxybenzenes, aminophenols and phenylenediamines with acidic potassium permanganate has provided a new understanding of the relationships between analyte structure, reaction conditions, kinetics of the light-producing pathway and emission intensity, with broad implications for this widely utilised chemiluminescence detection system. Using a permanganate reagent prepared in a polyphosphate solution and adjusted to pH 2.5, large differences in the rate of reaction with different positional isomers were observed, with the meta-substituted forms reacting far slower and therefore exhibiting much lower chemiluminescence intensities in flow analysis systems. The preliminary partial reduction of permanganate to form significant concentrations of Mn(III) increased the rate of reaction with all analytes tested, resulting in comparable or (in the case of aminophenol and phenylenediamine) even greater emission intensities for the meta-isomers, demonstrating the opportunity to tune the selectivity of the reagent towards certain classes of compound or even specific positional isomers of the same compound. Using more acidic permanganate reagents, in which polyphosphates are not required, the discrepancy between the chemiluminescence intensities was still observed, but was less prominent due to the generally faster rates of reaction. The enhancement of these chemiluminescence reactions by on-line addition of formic acid or formaldehyde can in part also be attributed to the generation of significant pools of the key Mn(III) precursor to the emitting species.
Subject(s)
Benzene Derivatives/chemistry , Benzene Derivatives/pharmacokinetics , Luminescence , Manganese Compounds/chemistry , Manganese Compounds/pharmacokinetics , Oxides/chemistry , Oxides/pharmacokinetics , Flow Injection Analysis/methods , Hydroxyl Radical/chemistry , Hydroxyl Radical/pharmacokinetics , Isomerism , KineticsABSTRACT
Further consideration has been given to the reaction pathway of a model peroxyoxalate chemiluminescence system. Again utilising doubly labelled oxalyl chloride and anhydrous hydrogen peroxide, 2D EXSY (13)C nuclear magnetic resonance (NMR) spectroscopy experiments allowed for the characterisation of unknown products and key intermediate species on the dark side of the peroxyoxalate chemiluminescence reaction. Exchange spectroscopy afforded elucidation of a scheme comprised of two distinct mechanistic pathways, one of which contributes to chemiluminescence. (13)C NMR experiments carried out at varied reagent molar ratios demonstrated that excess amounts of hydrogen peroxide favoured formation of 1,2-dioxetanedione: the intermediate that, upon thermolysis, has been long thought to interact with a fluorophore to produce light.