Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Int J Mol Sci ; 23(3)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35163264

ABSTRACT

Circadian disruption has been linked to cancer development, progression, and radiation response. Clinical evidence to date shows that circadian genetic variation and time of treatment affect radiation response and toxicity for women with breast cancer. At the molecular level, there is interplay between circadian clock regulators such as PER1, which mediates ATM and p53-mediated cell cycle gating and apoptosis. These molecular alterations may govern aggressive cancer phenotypes, outcomes, and radiation response. Exploiting the various circadian clock mechanisms may enhance the therapeutic index of radiation by decreasing toxicity, increasing disease control, and improving outcomes. We will review the body's natural circadian rhythms and clock gene-regulation while exploring preclinical and clinical evidence that implicates chronobiological disruptions in the etiology of breast cancer. We will discuss radiobiological principles and the circadian regulation of DNA damage responses. Lastly, we will present potential rational therapeutic approaches that target circadian pathways to improve outcomes in breast cancer. Understanding the implications of optimal timing in cancer treatment and exploring ways to entrain circadian biology with light, diet, and chronobiological agents like melatonin may provide an avenue for enhancing the therapeutic index of radiotherapy.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/radiotherapy , Circadian Rhythm/genetics , Animals , Circadian Clocks/genetics , Female , Humans , Radiobiology/methods
2.
Int J Mol Sci ; 23(1)2021 Dec 24.
Article in English | MEDLINE | ID: mdl-35008602

ABSTRACT

Understanding metabolic and immune regulation inherent to patient populations is key to improving the radiation response for our patients. To date, radiation therapy regimens are prescribed based on tumor type and stage. Patient populations who are noted to have a poor response to radiation such as those of African American descent, those who have obesity or metabolic syndrome, or senior adult oncology patients, should be considered for concurrent therapies with radiation that will improve response. Here, we explore these populations of breast cancer patients, who frequently display radiation resistance and increased mortality rates, and identify the molecular underpinnings that are, in part, responsible for the radiation response and that result in an immune-suppressive tumor microenvironment. The resulting immune phenotype is discussed to understand how antitumor immunity could be improved. Correcting nutrient deficiencies observed in these populations should be considered as a means to improve the therapeutic index of radiation therapy.


Subject(s)
Breast Neoplasms/radiotherapy , Diet , Nutrients , Black or African American , Female , Humans , Metabolic Syndrome , Obesity , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL