Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Cell ; 172(4): 696-705.e12, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29398115

ABSTRACT

Protein aggregation and dysfunction of the ubiquitin-proteasome system are hallmarks of many neurodegenerative diseases. Here, we address the elusive link between these phenomena by employing cryo-electron tomography to dissect the molecular architecture of protein aggregates within intact neurons at high resolution. We focus on the poly-Gly-Ala (poly-GA) aggregates resulting from aberrant translation of an expanded GGGGCC repeat in C9orf72, the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. We find that poly-GA aggregates consist of densely packed twisted ribbons that recruit numerous 26S proteasome complexes, while other macromolecules are largely excluded. Proximity to poly-GA ribbons stabilizes a transient substrate-processing conformation of the 26S proteasome, suggesting stalled degradation. Thus, poly-GA aggregates may compromise neuronal proteostasis by driving the accumulation and functional impairment of a large fraction of cellular proteasomes.


Subject(s)
Alanine/analogs & derivatives , C9orf72 Protein , Neurons , Polyglutamic Acid , Proteasome Endopeptidase Complex , Protein Aggregates , Alanine/genetics , Alanine/metabolism , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/pathology , HEK293 Cells , Humans , Neurons/metabolism , Neurons/pathology , Polyglutamic Acid/genetics , Polyglutamic Acid/metabolism , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Protein Biosynthesis , Protein Stability , Protein Structure, Quaternary , Rats , Rats, Sprague-Dawley
2.
Cell ; 171(1): 179-187.e10, 2017 Sep 21.
Article in English | MEDLINE | ID: mdl-28890085

ABSTRACT

Expression of many disease-related aggregation-prone proteins results in cytotoxicity and the formation of large intracellular inclusion bodies. To gain insight into the role of inclusions in pathology and the in situ structure of protein aggregates inside cells, we employ advanced cryo-electron tomography methods to analyze the structure of inclusions formed by polyglutamine (polyQ)-expanded huntingtin exon 1 within their intact cellular context. In primary mouse neurons and immortalized human cells, polyQ inclusions consist of amyloid-like fibrils that interact with cellular endomembranes, particularly of the endoplasmic reticulum (ER). Interactions with these fibrils lead to membrane deformation, the local impairment of ER organization, and profound alterations in ER membrane dynamics at the inclusion periphery. These results suggest that aberrant interactions between fibrils and endomembranes contribute to the deleterious cellular effects of protein aggregation. VIDEO ABSTRACT.


Subject(s)
Huntington Disease/pathology , Inclusion Bodies/pathology , Neurons/pathology , Neurons/ultrastructure , Peptides/metabolism , Amyloid/chemistry , Animals , Cryoelectron Microscopy , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/pathology , Female , HeLa Cells , Humans , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Inclusion Bodies/chemistry , Male , Mice , Mice, Inbred C57BL , Microscopy, Electron, Transmission , Mutation , Protein Aggregation, Pathological , Tomography/methods
3.
Nat Rev Mol Cell Biol ; 20(7): 421-435, 2019 07.
Article in English | MEDLINE | ID: mdl-30733602

ABSTRACT

Ageing is a major risk factor for the development of many diseases, prominently including neurodegenerative disorders such as Alzheimer disease and Parkinson disease. A hallmark of many age-related diseases is the dysfunction in protein homeostasis (proteostasis), leading to the accumulation of protein aggregates. In healthy cells, a complex proteostasis network, comprising molecular chaperones and proteolytic machineries and their regulators, operates to ensure the maintenance of proteostasis. These factors coordinate protein synthesis with polypeptide folding, the conservation of protein conformation and protein degradation. However, sustaining proteome balance is a challenging task in the face of various external and endogenous stresses that accumulate during ageing. These stresses lead to the decline of proteostasis network capacity and proteome integrity. The resulting accumulation of misfolded and aggregated proteins affects, in particular, postmitotic cell types such as neurons, manifesting in disease. Recent analyses of proteome-wide changes that occur during ageing inform strategies to improve proteostasis. The possibilities of pharmacological augmentation of the capacity of proteostasis networks hold great promise for delaying the onset of age-related pathologies associated with proteome deterioration and for extending healthspan.


Subject(s)
Alzheimer Disease/metabolism , Molecular Chaperones/metabolism , Parkinson Disease/metabolism , Protein Folding , Proteolysis , Proteostasis , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Animals , Humans , Molecular Chaperones/genetics , Parkinson Disease/genetics , Parkinson Disease/pathology
4.
Annu Rev Biochem ; 82: 323-55, 2013.
Article in English | MEDLINE | ID: mdl-23746257

ABSTRACT

The biological functions of proteins are governed by their three-dimensional fold. Protein folding, maintenance of proteome integrity, and protein homeostasis (proteostasis) critically depend on a complex network of molecular chaperones. Disruption of proteostasis is implicated in aging and the pathogenesis of numerous degenerative diseases. In the cytosol, different classes of molecular chaperones cooperate in evolutionarily conserved folding pathways. Nascent polypeptides interact cotranslationally with a first set of chaperones, including trigger factor and the Hsp70 system, which prevent premature (mis)folding. Folding occurs upon controlled release of newly synthesized proteins from these factors or after transfer to downstream chaperones such as the chaperonins. Chaperonins are large, cylindrical complexes that provide a central compartment for a single protein chain to fold unimpaired by aggregation. This review focuses on recent advances in understanding the mechanisms of chaperone action in promoting and regulating protein folding and on the pathological consequences of protein misfolding and aggregation.


Subject(s)
Molecular Chaperones/metabolism , Protein Folding , Proteins/metabolism , Proteome/metabolism , Proteostasis Deficiencies/physiopathology , Humans , Molecular Chaperones/chemistry , Molecular Chaperones/physiology , Proteins/chemistry
5.
Cell ; 154(1): 134-45, 2013 Jul 03.
Article in English | MEDLINE | ID: mdl-23791384

ABSTRACT

Dysfunction of protein quality control contributes to the cellular pathology of polyglutamine (polyQ) expansion diseases and other neurodegenerative disorders associated with aggregate deposition. Here we analyzed how polyQ aggregation interferes with the clearance of misfolded proteins by the ubiquitin-proteasome system (UPS). We show in a yeast model that polyQ-expanded proteins inhibit the UPS-mediated degradation of misfolded cytosolic carboxypeptidase Y(∗) fused to green fluorescent protein (GFP) (CG(∗)) without blocking ubiquitylation or proteasome function. Quantitative proteomic analysis reveals that the polyQ aggregates sequester the low-abundant and essential Hsp40 chaperone Sis1p. Overexpression of Sis1p restores CG(∗) degradation. Surprisingly, we find that Sis1p, and its homolog DnaJB1 in mammalian cells, mediates the delivery of misfolded proteins into the nucleus for proteasomal degradation. Sis1p shuttles between cytosol and nucleus, and its cellular level limits the capacity of this quality control pathway. Upon depletion of Sis1p by polyQ aggregation, misfolded proteins are barred from entering the nucleus and form cytoplasmic inclusions.


Subject(s)
Peptides/metabolism , Protein Folding , Proteolysis , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Cell Nucleus/metabolism , Cytosol/metabolism , Fructose-Bisphosphatase/chemistry , Fructose-Bisphosphatase/metabolism , HEK293 Cells , HSP40 Heat-Shock Proteins/metabolism , HSP72 Heat-Shock Proteins/metabolism , Humans , Proteasome Endopeptidase Complex/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Ubiquitination
6.
Trends Biochem Sci ; 48(3): 216-228, 2023 03.
Article in English | MEDLINE | ID: mdl-36280494

ABSTRACT

Aggrephagy describes the selective lysosomal transport and turnover of cytoplasmic protein aggregates by macro-autophagy. In this process, protein aggregates and conglomerates are polyubiquitinated and then sequestered by autophagosomes. Soluble selective autophagy receptors (SARs) are central to aggrephagy and physically bind to both ubiquitin and the autophagy machinery, thus linking the cargo to the forming autophagosomal membrane. Because the accumulation of protein aggregates is associated with cytotoxicity in several diseases, a better molecular understanding of aggrephagy might provide a conceptual framework to develop therapeutic strategies aimed at delaying the onset of these pathologies by preventing the buildup of potentially toxic aggregates. We review recent advances in our knowledge about the mechanism of aggrephagy.


Subject(s)
Autophagy , Protein Aggregates , Sequestosome-1 Protein/metabolism , Autophagosomes , Lysosomes/metabolism
7.
EMBO J ; 40(19): e107260, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34410010

ABSTRACT

The cellular protein quality control machinery is important for preventing protein misfolding and aggregation. Declining protein homeostasis (proteostasis) is believed to play a crucial role in age-related neurodegenerative disorders. However, how neuronal proteostasis capacity changes in different diseases is not yet sufficiently understood, and progress in this area has been hampered by the lack of tools to monitor proteostasis in mammalian models. Here, we have developed reporter mice for in vivo analysis of neuronal proteostasis. The mice express EGFP-fused firefly luciferase (Fluc-EGFP), a conformationally unstable protein that requires chaperones for proper folding, and that reacts to proteotoxic stress by formation of intracellular Fluc-EGFP foci and by reduced luciferase activity. Using these mice, we provide evidence for proteostasis decline in the aging brain. Moreover, we find a marked reaction of the Fluc-EGFP sensor in a mouse model of tauopathy, but not in mouse models of Huntington's disease. Mechanistic investigations in primary neuronal cultures demonstrate that different types of protein aggregates have distinct effects on the cellular protein quality control. Thus, Fluc-EGFP reporter mice enable new insights into proteostasis alterations in different diseases.


Subject(s)
Aging/metabolism , Disease Susceptibility , Genes, Reporter , Mice, Transgenic , Neurons/metabolism , Proteostasis , Aging/genetics , Animals , Cells, Cultured , Disease Models, Animal , Gene Expression , Hippocampus/metabolism , Hippocampus/pathology , Huntington Disease/etiology , Huntington Disease/metabolism , Huntington Disease/pathology , Mice , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Protein Aggregates , Protein Aggregation, Pathological , Protein Folding , Proteostasis Deficiencies/etiology , Proteostasis Deficiencies/metabolism , Proteostasis Deficiencies/pathology , Tauopathies/etiology , Tauopathies/metabolism , Tauopathies/pathology
8.
EMBO J ; 39(8): e102811, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32175624

ABSTRACT

The C9orf72 repeat expansion causes amyotrophic lateral sclerosis and frontotemporal dementia, but the poor correlation between C9orf72-specific pathology and TDP-43 pathology linked to neurodegeneration hinders targeted therapeutic development. Here, we addressed the role of the aggregating dipeptide repeat proteins resulting from unconventional translation of the repeat in all reading frames. Poly-GA promoted cytoplasmic mislocalization and aggregation of TDP-43 non-cell-autonomously, and anti-GA antibodies ameliorated TDP-43 mislocalization in both donor and receiver cells. Cell-to-cell transmission of poly-GA inhibited proteasome function in neighboring cells. Importantly, proteasome inhibition led to the accumulation of TDP-43 ubiquitinated within the nuclear localization signal (NLS) at lysine 95. Mutagenesis of this ubiquitination site completely blocked poly-GA-dependent mislocalization of TDP-43. Boosting proteasome function with rolipram reduced both poly-GA and TDP-43 aggregation. Our data from cell lines, primary neurons, transgenic mice, and patient tissue suggest that poly-GA promotes TDP-43 aggregation by inhibiting the proteasome cell-autonomously and non-cell-autonomously, which can be prevented by inhibiting poly-GA transmission with antibodies or boosting proteasome activity with rolipram.


Subject(s)
Amyotrophic Lateral Sclerosis/pathology , C9orf72 Protein/metabolism , DNA-Binding Proteins/metabolism , Dipeptides/metabolism , Frontotemporal Dementia/pathology , Active Transport, Cell Nucleus , Amyotrophic Lateral Sclerosis/metabolism , Animals , C9orf72 Protein/genetics , Cytoplasm/metabolism , DNA-Binding Proteins/genetics , Female , Frontotemporal Dementia/metabolism , HeLa Cells , Humans , Male , Mice , Neurons/metabolism , Nuclear Localization Signals , Proteasome Endopeptidase Complex/metabolism , Protein Aggregation, Pathological , Ubiquitin/metabolism
9.
EMBO Rep ; 23(6): e53890, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35438230

ABSTRACT

Aggregation of the multifunctional RNA-binding protein TDP-43 defines large subgroups of amyotrophic lateral sclerosis and frontotemporal dementia and correlates with neurodegeneration in both diseases. In disease, characteristic C-terminal fragments of ~25 kDa ("TDP-25") accumulate in cytoplasmic inclusions. Here, we analyze gain-of-function mechanisms of TDP-25 combining cryo-electron tomography, proteomics, and functional assays. In neurons, cytoplasmic TDP-25 inclusions are amorphous, and photobleaching experiments reveal gel-like biophysical properties that are less dynamic than nuclear TDP-43. Compared with full-length TDP-43, the TDP-25 interactome is depleted of low-complexity domain proteins. TDP-25 inclusions are enriched in 26S proteasomes adopting exclusively substrate-processing conformations, suggesting that inclusions sequester proteasomes, which are largely stalled and no longer undergo the cyclic conformational changes required for proteolytic activity. Reporter assays confirm that TDP-25 impairs proteostasis, and this inhibitory function is enhanced by ALS-causing TDP-43 mutations. These findings support a patho-physiological relevance of proteasome dysfunction in ALS/FTD.


Subject(s)
Amyotrophic Lateral Sclerosis , DNA-Binding Proteins , Frontotemporal Dementia , Neurons , Peptide Fragments , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Humans , Inclusion Bodies/metabolism , Neurons/metabolism , Peptide Fragments/genetics , Peptide Fragments/metabolism , Proteasome Endopeptidase Complex/metabolism
10.
EMBO J ; 38(9)2019 05 02.
Article in English | MEDLINE | ID: mdl-30886048

ABSTRACT

Neurodegenerative diseases are characterized by the accumulation of misfolded proteins in the brain. Insights into protein quality control mechanisms to prevent neuronal dysfunction and cell death are crucial in developing causal therapies. Here, we report that various disease-associated protein aggregates are modified by the linear ubiquitin chain assembly complex (LUBAC). HOIP, the catalytic component of LUBAC, is recruited to misfolded Huntingtin in a p97/VCP-dependent manner, resulting in the assembly of linear polyubiquitin. As a consequence, the interactive surface of misfolded Huntingtin species is shielded from unwanted interactions, for example with the low complexity sequence domain-containing transcription factor Sp1, and proteasomal degradation of misfolded Huntingtin is facilitated. Notably, all three core LUBAC components are transcriptionally regulated by Sp1, linking defective LUBAC expression to Huntington's disease. In support of a protective activity of linear ubiquitination, silencing of OTULIN, a deubiquitinase with unique specificity for linear polyubiquitin, decreases proteotoxicity, whereas silencing of HOIP has the opposite effect. These findings identify linear ubiquitination as a protein quality control mechanism and hence a novel target for disease-modifying strategies in proteinopathies.


Subject(s)
Huntingtin Protein/metabolism , Huntington Disease/metabolism , Polyubiquitin/metabolism , Protein Processing, Post-Translational , Sp1 Transcription Factor/metabolism , Valosin Containing Protein/metabolism , Adult , Aged , Animals , Brain/metabolism , Brain/pathology , Case-Control Studies , Cells, Cultured , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Female , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Huntingtin Protein/genetics , Huntington Disease/genetics , Huntington Disease/pathology , Male , Mice , Mice, Knockout , Middle Aged , NF-kappa B/genetics , NF-kappa B/metabolism , Neurons/metabolism , Neurons/pathology , Protein Binding , Protein Interaction Domains and Motifs , Signal Transduction , Sp1 Transcription Factor/genetics , Ubiquitination , Valosin Containing Protein/genetics
11.
Proc Natl Acad Sci U S A ; 117(8): 4099-4108, 2020 02 25.
Article in English | MEDLINE | ID: mdl-32047030

ABSTRACT

Mammalian cells present a fingerprint of their proteome to the adaptive immune system through the display of endogenous peptides on MHC-I complexes. MHC-I-bound peptides originate from protein degradation by the proteasome, suggesting that stably folded, long-lived proteins could evade monitoring. Here, we investigate the role in antigen presentation of the ribosome-associated quality control (RQC) pathway for the degradation of nascent polypeptides that are encoded by defective messenger RNAs and undergo stalling at the ribosome during translation. We find that degradation of model proteins by RQC results in efficient MHC-I presentation, independent of their intrinsic folding properties. Quantitative profiling of MHC-I peptides in wild-type and RQC-deficient cells by mass spectrometry showed that RQC substantially contributes to the composition of the immunopeptidome. Our results also identify endogenous substrates of the RQC pathway in human cells and provide insight into common principles causing ribosome stalling under physiological conditions.


Subject(s)
Antigen Presentation/physiology , Epitopes/metabolism , Histocompatibility Antigens Class I/physiology , Ribosomes/physiology , Animals , Gene Deletion , Gene Expression Regulation , HeLa Cells , Humans , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ubiquitin-Protein Ligases/metabolism
12.
Dev Dyn ; 251(4): 714-728, 2022 04.
Article in English | MEDLINE | ID: mdl-34622503

ABSTRACT

BACKGROUND: Plasticity-related genes (Prgs/PRGs) or lipid phosphate phosphatase-related proteins (LPPRs) comprise five known members, which have been linked to neuronal differentiation processes, such as neurite outgrowth, axonal branching, or dendritic spine formation. PRGs are highly brain-specific and belong to the lipid phosphate phosphatases (LPPs) superfamily, which influence lipid metabolism by dephosphorylation of bioactive lipids. PRGs, however, do not possess enzymatic activity, but modify lipid metabolism in a way that is still under investigation. RESULTS: We analyzed mRNA expression levels of all Prgs during mouse brain development, in the hippocampus, neocortex, olfactory bulbs, and cerebellum. We found different spatio-temporal expression patterns for each of the Prgs, and identified a high expression of the uncharacterized Prg4 throughout brain development. Unlike its close family members PRG3 and PRG5, PRG4 did not induce filopodial outgrowth in non-neuronal cell lines, and does not localize to the plasma membrane of filopodia. CONCLUSION: We showed PRG4 to be highly expressed in the developing and the adult brain, suggesting that it is of vital importance for normal brain function. Despite its similarities to other family members, it seems not to be involved in changes of cell morphology; instead, it is more likely to be associated with intracellular signaling.


Subject(s)
Brain , Phosphoric Monoester Hydrolases , Animals , Brain/metabolism , Cell Membrane/metabolism , Hippocampus/metabolism , Mice , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , Proteoglycans/metabolism , Pseudopodia
13.
EMBO J ; 37(3): 337-350, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29247078

ABSTRACT

Protein aggregation is associated with neurodegeneration and various other pathologies. How specific cellular environments modulate the aggregation of disease proteins is not well understood. Here, we investigated how the endoplasmic reticulum (ER) quality control system handles ß-sheet proteins that were designed de novo to form amyloid-like fibrils. While these proteins undergo toxic aggregation in the cytosol, we find that targeting them to the ER (ER-ß) strongly reduces their toxicity. ER-ß is retained within the ER in a soluble, polymeric state, despite reaching very high concentrations exceeding those of ER-resident molecular chaperones. ER-ß is not removed by ER-associated degradation (ERAD) but interferes with ERAD of other proteins. These findings demonstrate a remarkable capacity of the ER to prevent the formation of insoluble ß-aggregates and the secretion of potentially toxic protein species. Our results also suggest a generic mechanism by which proteins with exposed ß-sheet structure in the ER interfere with proteostasis.


Subject(s)
Amyloidogenic Proteins/metabolism , Endoplasmic Reticulum-Associated Degradation/physiology , Endoplasmic Reticulum/metabolism , Protein Aggregation, Pathological/prevention & control , Cell Line, Tumor , HEK293 Cells , HeLa Cells , Humans , Molecular Chaperones/metabolism , Protein Aggregation, Pathological/pathology , Protein Conformation, beta-Strand/physiology , Protein Folding , RNA Interference , RNA, Small Interfering/genetics , Unfolded Protein Response/physiology
15.
Proc Natl Acad Sci U S A ; 115(15): E3446-E3453, 2018 04 10.
Article in English | MEDLINE | ID: mdl-29581260

ABSTRACT

Huntington's disease is caused by the expansion of a polyglutamine (polyQ) tract in the N-terminal exon of huntingtin (HttEx1), but the cellular mechanisms leading to neurodegeneration remain poorly understood. Here we present in situ structural studies by cryo-electron tomography of an established yeast model system of polyQ toxicity. We find that expression of polyQ-expanded HttEx1 results in the formation of unstructured inclusion bodies and in some cases fibrillar aggregates. This contrasts with recent findings in mammalian cells, where polyQ inclusions were exclusively fibrillar. In yeast, polyQ toxicity correlates with alterations in mitochondrial and lipid droplet morphology, which do not arise from physical interactions with inclusions or fibrils. Quantitative proteomic analysis shows that polyQ aggregates sequester numerous cellular proteins and cause a major change in proteome composition, most significantly in proteins related to energy metabolism. Thus, our data point to a multifaceted toxic gain-of-function of polyQ aggregates, driven by sequestration of endogenous proteins and mitochondrial and lipid droplet dysfunction.


Subject(s)
Peptides/metabolism , Saccharomyces cerevisiae/metabolism , Humans , Huntington Disease/genetics , Huntington Disease/metabolism , Inclusion Bodies/chemistry , Inclusion Bodies/genetics , Inclusion Bodies/metabolism , Lipid Droplets/chemistry , Lipid Droplets/metabolism , Mitochondria/chemistry , Mitochondria/metabolism , Peptides/chemistry , Peptides/toxicity , Proteomics , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
16.
EMBO J ; 34(18): 2334-49, 2015 Sep 14.
Article in English | MEDLINE | ID: mdl-26228940

ABSTRACT

The cellular proteostasis network integrates the protein folding and clearance machineries in multiple sub-cellular compartments of the eukaryotic cell. The endoplasmic reticulum (ER) is the site of synthesis and folding of membrane and secretory proteins. A distinctive feature of the ER is its tightly controlled redox homeostasis necessary for the formation of inter- and intra-molecular disulphide bonds. Employing genetically encoded in vivo sensors reporting on the redox state in an organelle-specific manner, we show in the nematode Caenorhabditis elegans that the redox state of the ER is subject to profound changes during worm lifetime. In young animals, the ER is oxidizing and this shifts towards reducing conditions during ageing, whereas in the cytosol the redox state becomes more oxidizing with age. Likewise, the redox state in the cytosol and the ER change in an opposing manner in response to proteotoxic challenges in C. elegans and in HeLa cells revealing conservation of redox homeostasis. Moreover, we show that organelle redox homeostasis is regulated across tissues within C. elegans providing a new measure for organismal fitness.


Subject(s)
Aging/metabolism , Caenorhabditis elegans/metabolism , Endoplasmic Reticulum/metabolism , Proteostasis Deficiencies/metabolism , Aging/genetics , Animals , Caenorhabditis elegans/genetics , Endoplasmic Reticulum/genetics , Humans , Oxidation-Reduction , Proteostasis Deficiencies/genetics
17.
J Pathol ; 242(1): 24-38, 2017 05.
Article in English | MEDLINE | ID: mdl-28035683

ABSTRACT

Although p53 protein aggregates have been observed in cancer cell lines and tumour tissue, their impact in cancer remains largely unknown. Here, we extensively screened for p53 aggregation phenotypes in tumour biopsies, and identified nuclear inclusion bodies (nIBs) of transcriptionally inactive mutant or wild-type p53 as the most frequent aggregation-like phenotype across six different cancer types. p53-positive nIBs co-stained with nuclear aggregation markers, and shared molecular hallmarks of nIBs commonly found in neurodegenerative disorders. In cell culture, tumour-associated stress was a strong inducer of p53 aggregation and nIB formation. This was most prominent for mutant p53, but could also be observed in wild-type p53 cell lines, for which nIB formation correlated with the loss of p53's transcriptional activity. Importantly, protein aggregation also fuelled the dysregulation of the proteostasis network in the tumour cell by inducing a hyperactivated, oncogenic heat-shock response, to which tumours are commonly addicted, and by overloading the proteasomal degradation system, an observation that was most pronounced for structurally destabilized mutant p53. Patients showing tumours with p53-positive nIBs suffered from a poor clinical outcome, similar to those with loss of p53 expression, and tumour biopsies showed a differential proteostatic expression profile associated with p53-positive nIBs. p53-positive nIBs therefore highlight a malignant state of the tumour that results from the interplay between (1) the functional inactivation of p53 through mutation and/or aggregation, and (2) microenvironmental stress, a combination that catalyses proteostatic dysregulation. This study highlights several unexpected clinical, biological and therapeutically unexplored parallels between cancer and neurodegeneration. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Colonic Neoplasms/genetics , Glioblastoma/genetics , Intranuclear Inclusion Bodies/metabolism , Protein Aggregation, Pathological/genetics , Proteostasis Deficiencies/genetics , Tumor Suppressor Protein p53/genetics , Biopsy , Cell Line, Tumor , Colonic Neoplasms/complications , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Cytoplasm/metabolism , Glioblastoma/complications , Glioblastoma/metabolism , Glioblastoma/pathology , Heat-Shock Response/genetics , Heat-Shock Response/physiology , Humans , Kaplan-Meier Estimate , Mutation , Protein Aggregation, Pathological/etiology , Protein Aggregation, Pathological/metabolism , Proteostasis Deficiencies/etiology , Proteostasis Deficiencies/metabolism , Receptors, sigma/metabolism , Tumor Suppressor Protein p53/metabolism
18.
Proc Natl Acad Sci U S A ; 111(51): 18219-24, 2014 Dec 23.
Article in English | MEDLINE | ID: mdl-25489109

ABSTRACT

Expansion of a poly-glutamine (polyQ) repeat in a group of functionally unrelated proteins is the cause of several inherited neurodegenerative disorders, including Huntington's disease. The polyQ length-dependent aggregation and toxicity of these disease proteins can be reproduced in Saccharomyces cerevisiae. This system allowed us to screen for genes that when overexpressed reduce the toxic effects of an N-terminal fragment of mutant huntingtin with 103 Q. Surprisingly, among the identified suppressors were three proteins with Q-rich, prion-like domains (PrDs): glycine threonine serine repeat protein (Gts1p), nuclear polyadenylated RNA-binding protein 3, and minichromosome maintenance protein 1. Overexpression of the PrD of Gts1p, containing an imperfect 28 residue glutamine-alanine repeat, was sufficient for suppression of toxicity. Association with this discontinuous polyQ domain did not prevent 103Q aggregation, but altered the physical properties of the aggregates, most likely early in the assembly pathway, as reflected in their increased SDS solubility. Molecular simulations suggested that Gts1p arrests the aggregation of polyQ molecules at the level of nonfibrillar species, acting as a cap that destabilizes intermediates on path to form large fibrils. Quantitative proteomic analysis of polyQ interactors showed that expression of Gts1p reduced the interaction between polyQ and other prion-like proteins, and enhanced the association of molecular chaperones with the aggregates. These findings demonstrate that short, Q-rich peptides are able to shield the interactive surfaces of toxic forms of polyQ proteins and direct them into nontoxic aggregates.


Subject(s)
Peptides/metabolism , Prions/metabolism , Protein Binding , Saccharomyces cerevisiae/genetics
19.
J Biol Chem ; 288(33): 23633-8, 2013 Aug 16.
Article in English | MEDLINE | ID: mdl-23839939

ABSTRACT

The cellular heat shock response (HSR) protects cells from toxicity associated with defective protein folding, and this pathway is widely viewed as a potential pharmacological target to treat neurodegenerative diseases linked to protein aggregation. Here we show that the HSR is not activated by mutant huntingtin (HTT) even in cells selected for the highest expression levels and for the presence of inclusion bodies containing aggregated protein. Surprisingly, HSR activation by HSF1 overexpression or by administration of a small molecule activator lowers the concentration threshold at which HTT forms inclusion bodies in cells expressing aggregation-prone, polyglutamine-expanded fragments of HTT. These data suggest that the HSR does not mitigate inclusion body formation.


Subject(s)
Heat-Shock Response , Huntington Disease/metabolism , Inclusion Bodies/metabolism , Models, Biological , DNA-Binding Proteins/metabolism , HEK293 Cells , Heat Shock Transcription Factors , Humans , Huntington Disease/pathology , Mutant Proteins/metabolism , Protein Binding , Transcription Factors/metabolism
20.
J Mol Biol ; 436(14): 168615, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38759929

ABSTRACT

Eukaryotic cells are equipped with an intricate proteostasis network (PN), comprising nearly 3,000 components dedicated to preserving proteome integrity and sustaining protein homeostasis. This protective system is particularly important under conditions of external and intrinsic cell stress, where inherently dynamic proteins may unfold and lose functionality. A decline in proteostasis capacity is associated with the aging process, resulting in a reduced folding efficiency of newly synthesized proteins and a deficit in the cellular capacity to degrade misfolded proteins. A critical consequence of PN insufficiency is the accumulation of cytotoxic protein aggregates that underlie various age-related neurodegenerative conditions and other pathologies. By interfering with specific proteostasis components, toxic aggregates place an excessive burden on the PN's ability to maintain proteome integrity. This initiates a feed-forward loop, wherein the generation of misfolded and aggregated proteins ultimately leads to proteostasis collapse and cellular demise.


Subject(s)
Protein Aggregates , Proteostasis , Humans , Animals , Protein Folding , Protein Aggregation, Pathological/metabolism , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Proteome/metabolism , Aging/metabolism , Proteostasis Deficiencies/metabolism , Proteostasis Deficiencies/pathology
SELECTION OF CITATIONS
SEARCH DETAIL