Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Neuroimage ; 231: 117850, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33582277

ABSTRACT

Consciousness is a mental characteristic of the human mind, whose exact neural features remain unclear. We aimed to identify the critical nodes within the brain's global functional network that support consciousness. To that end, we collected a large fMRI resting state dataset with subjects in at least one of the following three consciousness states: preserved (including the healthy awake state, and patients with a brain injury history (BI) that is fully conscious), reduced (including the N1-sleep state, and minimally conscious state), and lost (including the N3-sleep state, anesthesia, and unresponsive wakefulness state). We also included a unique dataset of subjects in rapid eye movement sleep state (REM-sleep) to test for the presence of consciousness with minimum movements and sensory input. To identify critical nodes, i.e., hubs, within the brain's global functional network, we used a graph-theoretical measure of degree centrality conjoined with ROI-based functional connectivity. Using these methods, we identified various higher-order sensory and motor regions including the supplementary motor area, bilateral supramarginal gyrus (part of inferior parietal lobule), supragenual/dorsal anterior cingulate cortex, and left middle temporal gyrus, that could be important hubs whose degree centrality was significantly reduced when consciousness was reduced or absent. Additionally, we identified a sensorimotor circuit, in which the functional connectivity among these regions was significantly correlated with levels of consciousness across the different groups, and remained present in the REM-sleep group. Taken together, we demonstrated that regions forming a higher-order sensorimotor integration circuit are involved in supporting consciousness within the brain's global functional network. That offers novel and more mechanism-guided treatment targets for disorders of consciousness.


Subject(s)
Anesthesia/methods , Consciousness/physiology , Nerve Net/physiology , Sensorimotor Cortex/physiology , Sleep, REM/physiology , Wakefulness/physiology , Adult , Anesthetics, Intravenous/administration & dosage , Consciousness/drug effects , Electroencephalography/methods , Female , Humans , Magnetic Resonance Imaging/methods , Male , Nerve Net/diagnostic imaging , Nerve Net/drug effects , Sensorimotor Cortex/diagnostic imaging , Sensorimotor Cortex/drug effects , Sleep, REM/drug effects , Wakefulness/drug effects , Young Adult
2.
Neurosci Bull ; 36(9): 985-996, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32607740

ABSTRACT

Hydrocephalus is often treated with a cerebrospinal fluid shunt (CFS) for excessive amounts of cerebrospinal fluid in the brain. However, it is very difficult to distinguish whether the ventricular enlargement is due to hydrocephalus or other causes, such as brain atrophy after brain damage and surgery. The non-trivial evaluation of the consciousness level, along with a continuous drainage test of the lumbar cistern is thus clinically important before the decision for CFS is made. We studied 32 secondary mild hydrocephalus patients with different consciousness levels, who received T1 and diffusion tensor imaging magnetic resonance scans before and after lumbar cerebrospinal fluid drainage. We applied a novel machine-learning method to find the most discriminative features from the multi-modal neuroimages. Then, we built a regression model to regress the JFK Coma Recovery Scale-Revised (CRS-R) scores to quantify the level of consciousness. The experimental results showed that our method not only approximated the CRS-R scores but also tracked the temporal changes in individual patients. The regression model has high potential for the evaluation of consciousness in clinical practice.


Subject(s)
Consciousness , Drainage , Hydrocephalus , Adult , Cerebrospinal Fluid Shunts , Diffusion Tensor Imaging , Female , Humans , Hydrocephalus/surgery , Machine Learning , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL