ABSTRACT
We report the synthesis and characterization of library of new 2,3-disubstituted norbornadiene/quadricyclane couples. For the first time, the para-tolylsulfone moiety was employed as electron-withdrawing substituent in combination with a variety of different electron donors as counterparts. Comprehensive characterization was conducted for every interconversion couple. By comparison with structurally related molecules published before we established the tosyl moiety as suitable alternative to previously investigated ester functionalities by providing similar photophysical properties. The photo-induced interconversion behavior was investigated via UV/Vis- and NMR-spectroscopy. The UV/Vis experiments were carried out exclusively in acetonitrile, whereas several solvents were investigated in the NMR studies. A detailed description and comparison of the isomerization behavior is provided, while examining relevant optical properties like λmax and λonset. Thereby, an enhanced red-shift up to λmax=394â nm combined with an λonset value of 469â nm could be generated which is necessary for potential applications.
ABSTRACT
We describe the synthesis and computational investigation of N-heterocycle-substituted hexa-peri-hexabenzocoronenes (HBCs). Following our method for the preparation of thioether-substituted HBCs, we prepared pyrrole-, indole-, carbazole-, and 1H-benz[g]indole-substituted HBCs from the corresponding fluorinated precursors under microwave irradiation. A series of polysubstituted benzoindole-HBCs with windmill architectures was also synthesized using the polyfluorinated HBC analogs. Due to the circular arrangement of the benzoindole moiety, the attachment of multiple substituents results in the presence of multiple conformers at room temperature. The rotation barrier can be overcome by heating the compounds to 323-333 K. Additionally, the investigation of the relaxed geometries shows two π-stacking motifs within the conformers. Similar to the thioether substituted HBCs, the nature of the heterocycle does not influence the optoelectronic properties of the HBC core. The attachment of multiple benzoindole substituents leads to a bathochromic shift of the absorption and emission spectra, comparable to our previous studies.
ABSTRACT
A new concept for the regioselective synthesis of Hamilton-receptor and cyanurate-functionalized oligo adducts of the fullerene C60 was developed. Based on an in-situ deprotection and click-post-functionalization approach with novel azido precursors, the corresponding fullerene hexakis-adducts with octahedral addition patterns and up to twelve Hamilton-receptor/cyanurate moieties surrounding the fullerene sphere were synthesized. The versatility of this approach was further demonstrated by the synthesis of Hamilton-receptor/cyanurate functionalized fullerene mono-adducts, which are not accessible by direct cyclopropanation. Several fullerene target compounds were purified by simple washing procedures of the solid crude reaction mixture without the need for chromatography. The resulting fullerene mono- and hexakis-adducts were fully characterized and their supramolecular properties were investigated by NMR-spectroscopy and isothermal titration calorimetry (ITC).
ABSTRACT
We report on the synthesis and characterization of a family of three water-soluble bola-amphiphilic zinc-porphyrin-perylenebisimide triads containing oligo carboxylic-acid capped Newkome dendrons in the periphery. Variations of the perylenebisimide (PBI) core geometry and dendron size (G1 and G2 dendrons with 3- and 9-carboxylic acid groups respectively) allow for tuning the supramolecular aggregation behavior with respect to variation of the molecular architecture. The triads show good solubility in basic aqueous media and aggregation to supramolecular assemblies. Theoretical investigations at the DFT level of theory accompanied by electrochemical measurements unravel the geometric and electronic structure of the amphiphiles. UV/Vis and fluorescence titrations with varying amounts of THF demonstrate disaggregation.
ABSTRACT
The non-covalent functionalization of black phosphorus (BP) was studied with a scope of ten tailor-made perylene diimides (PDIs). A combination of UV/Vis-, fluorescence-, as well as Raman spectroscopy and atomic force microscopy was used to investigate the structural factors, which contribute to a pronounced PDI-BP interaction and thus support the protection of BP nanosheets against oxidative degradation. We were able to show, that water-soluble, amphiphilic PDIs with highly charged head groups can be used for the non-covalent functionalization of BP in aqueous media. Here, based on the hydrophobic effect, an efficient adsorption of the respective PDI molecules takes place and leads to the formation of a passivating film, yielding a considerable stabilization of the BP flakes under ambient conditions exceeding 30â days.
ABSTRACT
The emerging laser writing represents an efficient and promising strategy for covalent two dimensional (2D)-patterning of graphene yet remains a challenging task due to the lack of applicable reagents. Here, we report a versatile approach for covalent laser patterning of graphene using a family of trivalent organic iodine compounds as effective reagents, allowing for the engraving of a library of functionalities onto the graphene surface. The relatively weak iodine-centered bonds within these compounds can readily undergo laser-induced cleavage to in situ generate radicals localized to the irradiated regions for graphene binding, thus completing the covalent 2D-structuring of this 2D-film. The tailor-made attachment of distinct functional moieties with varying electrical properties as well as their thermally reversible binding manner enables programming the surface properties of graphene. With this delicate strategy the bottleneck of a limited scope of functional groups patterned onto the graphene surface upon laser writing is tackled.
ABSTRACT
The synthesis and characterization of four dumbbell-shaped fullerene molecules connected by isosorbide and isomannide moieties is presented. Additionally, their electrochemical behavior and their ability to form complexes with [10]cycloparaphenylene ([10]CPP) were investigated. The cyclic voltammetry (CV) results of the fullerene dumbbells demonstrate a high electron affinity, indicating their strong interaction with electron-donating counterparts such as carbon nanorings, which possess complementary charge and shape properties. To study the thermodynamic and kinetic parameters of complexation, isothermal titration calorimetry (ITC) was employed. NMR titration experiments provided further insights into the binding stoichiometries. Two distinct approaches were utilized to create bridged structures: one based on cyclopropane and the other based on furan. Regardless of the type of linker used, all derivatives formed conventional 2 : 1 complexes denoted as [10]CPP2 âC60derivative . However, the methano-dumbbell molecules exhibited distinct binding behavior, resulting in the formation of mono- and bis-pseudorotaxanes, as well as oligomers (polymers). The formation of linear polymers holds significant potential for applications in solar energy conversion processes.
ABSTRACT
We investigate the gas-phase chemistry of noncovalent complexes of [10]cycloparaphenylene ([10]CPP) with C60 and C70 by means of atmospheric pressure photoionization and electrospray ionization mass spectrometry. The literature-known [1 : 1] complexes, namely [10]CPPâC60 and [10]CPPâC70 , are observed as radical cations and anions. Their stability and charge distribution are studied using energy-resolved collision-induced dissociation (ER-CID). These measurements reveal that complexes with a C70 core exhibit a greater stability and, on the other hand, that the radical cations are more stable than the respective radical anions. Regarding the charge distribution, in anionic complexes charges are exclusively located on C60 or C70 , while the charges reside on [10]CPP in the case of cationic complexes. [2 : 1] complexes of the ([10]CPP2 âC60/70 )+ â /- â type are observed for the first time as isolated solitary gas-phase species. Here, C60 -based [2 : 1] complexes are less stable than the respective C70 analogues. By virtue of the high stability of cationic [1 : 1] complexes, [2 : 1] complexes show a strongly reduced stability of the radical cations. DFT analyses of the minimum geometries as well as molecular dynamics calculations support the experimental data. Furthermore, our novel gas-phase [2 : 1] complexes are also found in 1,2-dichlorobenzene. Insights into the thermodynamic parameters of the binding process as well as the species distribution are derived from isothermal titration calorimetry (ITC) measurements.
ABSTRACT
Novel energy-storage solutions are necessary for the transition from fossil to renewable energy sources. Auspicious candidates are so-called molecular solar thermal (MOST) systems. In our study, we investigate the surface chemistry of a derivatized norbornadiene/quadricyclane molecule pair. By using suitable push-pull substituents, a bathochromic shift of the absorption onset is achieved, allowing a greater overlap with the solar spectrum. Specifically, the adsorption and thermally induced reactions of 2-carbethoxy-3-phenyl-norbornadiene/quadricyclane are assessed on Pt(111) and Ni(111) as model catalyst surfaces by synchrotron radiation-based X-ray photoelectron spectroscopy (XPS). Comparison of the respective XP spectra enables the distinction of the energy-rich molecule from its energy-lean counterpart and allows qualitative information on the adsorption motifs to be derived. Monitoring the quantitative cycloreversion between 140 and 230â K spectroscopically demonstrates the release of the stored energy to be successfully triggered on Pt(111). Heating to above 300â K leads to fragmentation of the molecular framework. On Ni(111), no conversion of the energy-rich compound takes place. The individual decomposition pathways of the two isomers begin at 160 and 180â K, respectively. Pronounced desorption of almost the entire surface coverage only occurs for the energy-lean molecule on Ni(111) above 280â K; this suggests weakly bound species. The correlation between adsorption motif and desorption behavior is important for applications of MOST systems in heterogeneously catalyzed processes.
ABSTRACT
The transition to renewable energy sources comes along with the search for new energy storage solutions. Molecular solar thermal systems directly harvest and store solar energy in a chemical manner. By a suitable molecular design, a higher overall efficiency can be achieved. In this study, we investigate the surface chemistry of oxa-norbornadiene/quadricyclane derivatives on a Pt(111) surface. Specifically, we focus on the energy storage and release properties of molecules that are substituted with ester moieties of different sizes. For our model catalytic approach, synchrotron radiation-based x-ray photoelectron spectroscopy measurements were conducted in ultra-high vacuum (UHV) and correlated with the catalytic behavior in the liquid phase monitored by photochemical infrared reflection absorption spectroscopy. The differences in their spectral appearance enabled us to unambiguously differentiate the energy-lean and energy-rich isomers and decomposition products. Next to qualitative information on the adsorption motifs, temperature-programmed experiments allowed for the observation of thermally induced reactions and the deduction of the related reaction pathways. We analyzed the selectivity of the cycloreversion reaction from the energy-rich quadricyclane derivative to its energy-lean norbornadiene isomer and competing processes, such as desorption and decomposition. For the 2,3-bis(methylester)-substitution, the cycloreversion reaction was found to occur between 310 and 340 K, while the thermal stability limit of the compounds was determined to be 380 K. The larger 2,3-bis(benzylester) derivatives have a lower apparent adsorption energy and a decomposition onset already at 135 K. In the liquid phase (in acetonitrile), we determined the rate constants for the cycloreversion reaction on Pt(111) to k = 5.3 × 10-4 s-1 for the 2,3-bis(methylester)-substitution and k = 6.3 × 10-4 s-1 for the 2,3-bis(benzylester) derivative. The selectivities were of >99% and 98% for the two molecules, respectively. The difference in the catalytic behavior of Pt(111) for both derivatives is less pronounced in the liquid phase than in UHV, which we attribute to the passivation of the Pt(111) surface by carbonaceous species under ambient conditions.
ABSTRACT
Three-dimensionally (3D) well-ordered and highly integrated graphene hybrid architectures are considered to be next-generation multifunctional graphene materials but still remain elusive. Here, we report the first realization of unprecedented 3D-patterned graphene nano-ensembles composed of a graphene monolayer, a tailor-made structured organophenyl layer, and three metal oxide films, providing the first example of such a hybrid nano-architecture. These spatially resolved and hierarchically structured quinary hybrids are generated via a two-dimensional (2D)-functionalization-mediated atomic layer deposition growth process, involving an initial lateral molecular programming of the graphene lattice via lithography-assisted 2D functionalization and a subsequent stepwise molecular assembly in these regions in the z-direction. Our breakthrough lays the foundation for the construction of emerging 3D-patterned graphene heterostructures.
ABSTRACT
We report on a controllable and specific functionalisation route for graphene field-effect transistors (GFETs) for the recognition of small physiologically active molecules. Key element is the noncovalent functionalisation of the graphene surface with perylene bisimide (PBI) molecules directly on the growth substrate. This Functional Layer Transfer enables the homogeneous self-assembly of PBI molecules on graphene, onto which antibodies are subsequently immobilised. The sensor surface was characterised by atomic force microscopy, Raman spectroscopy and electrical measurements, showing superior performance over conventional functionalisation after transfer. Specific sensing of small molecules was realised by monitoring the electrical property changes of functionalised GFET devices upon the application of methamphetamine and cortisol. The concentration dependent electrical response of our sensors was determined down to a concentration of 300â ng ml-1 for methamphetamine.
Subject(s)
Graphite , Graphite/chemistry , Transistors, Electronic , Biomarkers , Antibodies , Microscopy, Atomic ForceABSTRACT
We describe for the first time the full reaction coordinate regarding the photoisomerization of red-absorbing norbornadienes (NBDs) to quadricyclanes (QCs). Our studies go beyond steady-state investigations by using an arsenal of time-resolved techniques. Importantly, the red absorption of NBDs is made possible by a different charge-transfer character; adjusting its strength enables control over the photoreversibility of the rearrangement. In the case of strong charge-transfer character (a weakly electron-withdrawing ester and a strongly electron-donating dimethylaniline), photoirradiation with visible light into the delocalized charge-transfer absorption of NBD affords QC reversibly. In stark contrast, UV photoirradiation into the NBD localized excited state leads to a photoinduced degradation and cannot be back-isomerized to NBD under any circumstances. If the charge-transfer character is weak (a weakly electron-withdrawing ester and a weakly electron-donating phenyl), reversibility is seen independently of the photoirradiation light.
ABSTRACT
Covalently patterned Janus-functionalized graphene featuring a spatially defined asymmetric bifacial addend binding motif remains a challenging synthetic target. Here, a facile and universal laser writing approach for a one-step covalent Janus patterning of graphene is reported, leading to the formation of up to now elusive graphene architectures, solely consisting of antaratopically functionalized superlattices. The structurally defined covalent functionalization procedure is based on laser-triggered concurrent photolysis of two different photosensitizers situated on both sides of the graphene plane, generating radicals and subsequent addend binding in the laser-irradiated areas only. Careful structure analysis was performed by Raman spectroscopy and Kelvin probe force microscopy. In terms of the advantages of our newly established concept, including a simple/easy-to-operate patterning procedure, arbitrary pattern availability, and a high degree of addend binding, an easy access to tailor-designed Janus-functionalized graphene devices with spatially resolved functional entities can be envisaged.
ABSTRACT
Efficiently assembling heterostructures with desired interface properties, stability, and facile patternability is challenging yet crucial to modern device fabrication. Here, we demonstrate an interface coupling concept to bottom-up construct covalently linked graphene/MoS2 heterostructures in a spatially defined manner. The covalent heterostructure domains are selectively created in analogy to the traditional printmaking technique, enabling graphic patterns at the bottom MoS2 layer to be precisely transferred to the top graphene layer. This bottom-up connection and transcription of chemical information is achieved simply via laser beam irradiation. Our approach opens up a new paradigm for heterostructure construction and integration. It enables the efficient generation and real-time visualization of spatially well-resolved covalent graphene/MoS2 heterostructures, facilitating further design and integration of patterned heterostructures into new generations of high-performance devices.
ABSTRACT
Transition metal dichalcogenides are attractive 2D materials in the context of solar energy conversion. Previous investigations have focused predominantly on the properties of these systems. The realization of noncovalent hybrids with, for example, complementary electroactive materials remains underexplored to this date for exfoliated WS2. In this contribution, we explore WS2 by means of exfoliation and integration together with visible light-absorbing and electron-accepting perylene diimides into versatile electron-donor acceptor hybrids. Important is the distinct electron-donating feature of WS2. Detailed spectroscopic investigations of WS2-PDI confirm the electron donor/acceptor nature of the hybrid and indicate that green light photoexcitation leads to the formation of long-lived WS2â¢+-PDIâ¢- charge-separated states.
ABSTRACT
Small scratches and abrasion cause damage to packaging coatings. Albeit often invisible to the human eye, such small defects in the coating may ultimately have a strong negative impact on the whole system. For instance, gases may penetrate the coating and consequently the package barrier, thus leading to the degradation of sensitive goods. Herein, the indicators of mechanical damage in the form of particles are reported, which can readily be integrated into coatings. Shear stress-induced damage is indicated by the particles via a color change. The particles are designed as core-shell supraparticles. The supraparticle core is based on rhodamine B dye-doped silica nanoparticles, whereas the shell is made of alumina nanoparticles. The alumina surface is functionalized with a monolayer of a perylene dye. The resulting core-shell supraparticle system thus contains two colors, one in the core and one in the shell part of the architecture. Mechanical damage of this structure exposes the core from the shell, resulting in a color change. With particles integrated into a coating lacquer, mechanical damage of a coating can be monitored via a color change and even be related to the degree of oxygen penetration in a damaged coating.
Subject(s)
Nanoparticles , Silicon Dioxide , Aluminum Oxide , Humans , Nanoparticles/chemistry , Silicon Dioxide/chemistryABSTRACT
An unprecedented compound class of functional organic hybrids consisting of a photoswitchable norbornadiene building block and a redoxactive chromophore, namely naphthalene diimide, were designed and synthesized. Within these structures the capability of rylene chromophores to function as a redox active catalyst upon their photoexcitation was utilized to initiate the oxidative back-conversion of the inâ situ formed quadricyclane unit to its norbornadiene analogue. In this way successive photoexcitation at two different wavelengths enabled a controlled photoswitching between the two isomerical states of the hybrids. Beyond this prove of concept, the dependency of the reaction rate to the intramolecular distance of the two functional molecular building blocks as well as the concentration of the photoexcited sample was monitored. The experimental findings and interpretations were furthermore supported by quantum chemical investigations.
ABSTRACT
The front cover artwork is provided by the group of Prof. Dr. Christian Papp at Physical Chemistry II of FAU Erlangen-Nürnberg and FU Berlin. The image shows the isomerization reaction of the molecule pair 2,3-dicyano-norbornadiene/quadricyclane as potential molecular solar thermal (MOST) energy storage system. Read the full text of the Research Article at 10.1002/cphc.202200199.
ABSTRACT
Molecular solar thermal (MOST) systems are a promising approach for the introduction of sustainable energy storage solutions. We investigated the feasibility of the dicyano-substituted norbornadiene/quadricyclane molecule pair on Ni(111) for catalytic model studies. This derivatization is known to lead to a desired bathochromic shift of the absorption maximum of the parent compound. In our experiments further favorable properties were found: At low temperatures, both molecules adsorb intact without any dissociation. In situ temperature-programmed HR-XPS experiments reveal the conversion of (CN)2 -quadricyclane to (CN)2 -norbornadiene under energy release between 175 and 260â K. The absence of other surface species due to side reactions indicates full isomerization. Further heating leads to the decomposition of the molecular framework into smaller carbonaceous fragments above 290â K and finally to amorphous structures, carbide and nitride above 400â K. DFT calculations gave insights into the adsorption geometries. (CN)2 -norbornadiene is expected to interact stronger with the surface, with flat configurations being favorable. (CN)2 -quadricyclane exhibits smaller adsorption energies with negligible differences for flat and side-on geometries. Simulated XP spectra are in good agreement with experimental findings further supporting the specific spectroscopic fingerprints for both valence isomers.