Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Cell ; 171(6): 1437-1452.e17, 2017 Nov 30.
Article in English | MEDLINE | ID: mdl-29195078

ABSTRACT

We previously piloted the concept of a Connectivity Map (CMap), whereby genes, drugs, and disease states are connected by virtue of common gene-expression signatures. Here, we report more than a 1,000-fold scale-up of the CMap as part of the NIH LINCS Consortium, made possible by a new, low-cost, high-throughput reduced representation expression profiling method that we term L1000. We show that L1000 is highly reproducible, comparable to RNA sequencing, and suitable for computational inference of the expression levels of 81% of non-measured transcripts. We further show that the expanded CMap can be used to discover mechanism of action of small molecules, functionally annotate genetic variants of disease genes, and inform clinical trials. The 1.3 million L1000 profiles described here, as well as tools for their analysis, are available at https://clue.io.


Subject(s)
Gene Expression Profiling/methods , Cell Line, Tumor , Drug Resistance, Neoplasm , Gene Expression Profiling/economics , Humans , Neoplasms/drug therapy , Organ Specificity , Pharmaceutical Preparations/metabolism , Sequence Analysis, RNA/economics , Sequence Analysis, RNA/methods , Small Molecule Libraries
2.
Genome Res ; 26(5): 670-80, 2016 05.
Article in English | MEDLINE | ID: mdl-26975778

ABSTRACT

We can now routinely identify coding variants within individual human genomes. A pressing challenge is to determine which variants disrupt the function of disease-associated genes. Both experimental and computational methods exist to predict pathogenicity of human genetic variation. However, a systematic performance comparison between them has been lacking. Therefore, we developed and exploited a panel of 26 yeast-based functional complementation assays to measure the impact of 179 variants (101 disease- and 78 non-disease-associated variants) from 22 human disease genes. Using the resulting reference standard, we show that experimental functional assays in a 1-billion-year diverged model organism can identify pathogenic alleles with significantly higher precision and specificity than current computational methods.


Subject(s)
Genetic Complementation Test/methods , Genetic Diseases, Inborn , Saccharomyces cerevisiae , Transcription, Genetic , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/metabolism , Humans , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
3.
Nucleic Acids Res ; 43(Database issue): D470-8, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25428363

ABSTRACT

The Biological General Repository for Interaction Datasets (BioGRID: http://thebiogrid.org) is an open access database that houses genetic and protein interactions curated from the primary biomedical literature for all major model organism species and humans. As of September 2014, the BioGRID contains 749,912 interactions as drawn from 43,149 publications that represent 30 model organisms. This interaction count represents a 50% increase compared to our previous 2013 BioGRID update. BioGRID data are freely distributed through partner model organism databases and meta-databases and are directly downloadable in a variety of formats. In addition to general curation of the published literature for the major model species, BioGRID undertakes themed curation projects in areas of particular relevance for biomedical sciences, such as the ubiquitin-proteasome system and various human disease-associated interaction networks. BioGRID curation is coordinated through an Interaction Management System (IMS) that facilitates the compilation interaction records through structured evidence codes, phenotype ontologies, and gene annotation. The BioGRID architecture has been improved in order to support a broader range of interaction and post-translational modification types, to allow the representation of more complex multi-gene/protein interactions, to account for cellular phenotypes through structured ontologies, to expedite curation through semi-automated text-mining approaches, and to enhance curation quality control.


Subject(s)
Databases, Genetic , Gene Regulatory Networks , Protein Interaction Mapping , Arachidonic Acid/metabolism , Disease/genetics , Humans , Internet
4.
Nucleic Acids Res ; 40(Database issue): D700-5, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22110037

ABSTRACT

The Saccharomyces Genome Database (SGD, http://www.yeastgenome.org) is the community resource for the budding yeast Saccharomyces cerevisiae. The SGD project provides the highest-quality manually curated information from peer-reviewed literature. The experimental results reported in the literature are extracted and integrated within a well-developed database. These data are combined with quality high-throughput results and provided through Locus Summary pages, a powerful query engine and rich genome browser. The acquisition, integration and retrieval of these data allow SGD to facilitate experimental design and analysis by providing an encyclopedia of the yeast genome, its chromosomal features, their functions and interactions. Public access to these data is provided to researchers and educators via web pages designed for optimal ease of use.


Subject(s)
Databases, Genetic , Genome, Fungal , Saccharomyces cerevisiae/genetics , Genes, Fungal , Genomics , High-Throughput Nucleotide Sequencing , Molecular Sequence Annotation , Phenotype , Software , Terminology as Topic
5.
Nucleic Acids Res ; 38(Database issue): D433-6, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19906697

ABSTRACT

The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org) is a scientific database for the molecular biology and genetics of the yeast Saccharomyces cerevisiae, which is commonly known as baker's or budding yeast. The information in SGD includes functional annotations, mapping and sequence information, protein domains and structure, expression data, mutant phenotypes, physical and genetic interactions and the primary literature from which these data are derived. Here we describe how published phenotypes and genetic interaction data are annotated and displayed in SGD.


Subject(s)
Computational Biology/methods , Databases, Nucleic Acid , Genome, Fungal , Mutation , Saccharomyces cerevisiae/genetics , Computational Biology/trends , DNA, Fungal , Databases, Genetic , Databases, Protein , Genes, Fungal , Information Storage and Retrieval/methods , Internet , Phenotype , Protein Structure, Tertiary , Software
6.
Cancer Res ; 82(20): 3671-3672, 2022 10 17.
Article in English | MEDLINE | ID: mdl-36245243

ABSTRACT

The role of the microbiome in human cancer has become an area of intensive research and controversy. Many reports have highlighted the physical association of Fusobacterium with colorectal cancer. This association has provided diagnostic and therapeutic promise but has also given rise to several controversies regarding the influence of Fusobacterium species on human colorectal cancer. Here, we discuss two areas of controversy surrounding this emerging pathogen: the influence of Fusobacterium on colorectal cancer proliferation and the effect of Fusobacterium on the immune microenvironment of colorectal cancer.


Subject(s)
Colorectal Neoplasms , Fusobacterium Infections , Microbiota , Fusobacterium , Fusobacterium Infections/complications , Fusobacterium Infections/microbiology , Humans , Tumor Microenvironment
7.
Mol Genet Genomics ; 283(5): 415-25, 2010 May.
Article in English | MEDLINE | ID: mdl-20221640

ABSTRACT

Curation of biological data is a multi-faceted task whose goal is to create a structured, comprehensive, integrated, and accurate resource of current biological knowledge. These structured data facilitate the work of the scientific community by providing knowledge about genes or genomes and by generating validated connections between the data that yield new information and stimulate new research approaches. For the model organism databases (MODs), an important source of data is research publications. Every published paper containing experimental information about a particular model organism is a candidate for curation. All such papers are examined carefully by curators for relevant information. Here, four curators from different MODs describe the literature curation process and highlight approaches taken by the four MODs to address: (1) the decision process by which papers are selected, and (2) the identification and prioritization of the data contained in the paper. We will highlight some of the challenges that MOD biocurators face, and point to ways in which researchers and publishers can support the work of biocurators and the value of such support.


Subject(s)
Databases, Genetic , Models, Biological , Animals , Bibliographies as Topic , Genes , Internet , Statistics as Topic , Terminology as Topic
8.
Nucleic Acids Res ; 36(Database issue): D577-81, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17982175

ABSTRACT

The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org/) collects and organizes biological information about the chromosomal features and gene products of the budding yeast Saccharomyces cerevisiae. Although published data from traditional experimental methods are the primary sources of evidence supporting Gene Ontology (GO) annotations for a gene product, high-throughput experiments and computational predictions can also provide valuable insights in the absence of an extensive body of literature. Therefore, GO annotations available at SGD now include high-throughput data as well as computational predictions provided by the GO Annotation Project (GOA UniProt; http://www.ebi.ac.uk/GOA/). Because the annotation method used to assign GO annotations varies by data source, GO resources at SGD have been modified to distinguish data sources and annotation methods. In addition to providing information for genes that have not been experimentally characterized, GO annotations from independent sources can be compared to those made by SGD to help keep the literature-based GO annotations current.


Subject(s)
Databases, Genetic , Genes, Fungal , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Computational Biology , Genome, Fungal , Genomics , Internet , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/physiology , User-Computer Interface , Vocabulary, Controlled
9.
Nucleic Acids Res ; 35(Database issue): D468-71, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17142221

ABSTRACT

The recent explosion in protein data generated from both directed small-scale studies and large-scale proteomics efforts has greatly expanded the quantity of available protein information and has prompted the Saccharomyces Genome Database (SGD; http://www.yeastgenome.org/) to enhance the depth and accessibility of protein annotations. In particular, we have expanded ongoing efforts to improve the integration of experimental information and sequence-based predictions and have redesigned the protein information web pages. A key feature of this redesign is the development of a GBrowse-derived interactive Proteome Browser customized to improve the visualization of sequence-based protein information. This Proteome Browser has enabled SGD to unify the display of hidden Markov model (HMM) domains, protein family HMMs, motifs, transmembrane regions, signal peptides, hydropathy plots and profile hits using several popular prediction algorithms. In addition, a physico-chemical properties page has been introduced to provide easy access to basic protein information. Improvements to the layout of the Protein Information page and integration of the Proteome Browser will facilitate the ongoing expansion of sequence-specific experimental information captured in SGD, including post-translational modifications and other user-defined annotations. Finally, SGD continues to improve upon the availability of genetic and physical interaction data in an ongoing collaboration with BioGRID by providing direct access to more than 82,000 manually-curated interactions.


Subject(s)
Databases, Protein , Proteomics , Saccharomyces cerevisiae Proteins/chemistry , Computer Graphics , Genome, Fungal , Internet , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Sequence Analysis, Protein , User-Computer Interface
10.
Nucleic Acids Res ; 34(Database issue): D442-5, 2006 Jan 01.
Article in English | MEDLINE | ID: mdl-16381907

ABSTRACT

Sequencing and annotation of the entire Saccharomyces cerevisiae genome has made it possible to gain a genome-wide perspective on yeast genes and gene products. To make this information available on an ongoing basis, the Saccharomyces Genome Database (SGD) (http://www.yeastgenome.org/) has created the Genome Snapshot (http://db.yeastgenome.org/cgi-bin/genomeSnapShot.pl). The Genome Snapshot summarizes the current state of knowledge about the genes and chromosomal features of S.cerevisiae. The information is organized into two categories: (i) number of each type of chromosomal feature annotated in the genome and (ii) number and distribution of genes annotated to Gene Ontology terms. Detailed lists are accessible through SGD's Advanced Search tool (http://db.yeastgenome.org/cgi-bin/search/featureSearch), and all the data presented on this page are available from the SGD ftp site (ftp://ftp.yeastgenome.org/yeast/).


Subject(s)
Databases, Genetic , Genome, Fungal , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Chromosomes, Fungal , Computer Graphics , Genomics , Internet , Saccharomyces cerevisiae Proteins/classification , Saccharomyces cerevisiae Proteins/physiology , User-Computer Interface
11.
Nucleic Acids Res ; 33(Database issue): D374-7, 2005 Jan 01.
Article in English | MEDLINE | ID: mdl-15608219

ABSTRACT

The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org/) is a scientific database of gene, protein and genomic information for the yeast Saccharomyces cerevisiae. SGD has recently developed two new resources that facilitate nucleotide and protein sequence comparisons between S.cerevisiae and other organisms. The Fungal BLAST tool provides directed searches against all fungal nucleotide and protein sequences available from GenBank, divided into categories according to organism, status of completeness and annotation, and source. The Model Organism BLASTP Best Hits resource displays, for each S.cerevisiae protein, the single most similar protein from several model organisms and presents links to the database pages of those proteins, facilitating access to curated information about potential orthologs of yeast proteins.


Subject(s)
Databases, Genetic , Genome, Fungal , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid , Software , Saccharomyces cerevisiae Proteins/chemistry , Sequence Analysis
12.
Nucleic Acids Res ; 32(Database issue): D311-4, 2004 Jan 01.
Article in English | MEDLINE | ID: mdl-14681421

ABSTRACT

The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org/), a scientific database of the molecular biology and genetics of the yeast Saccharomyces cerevisiae, has recently developed several new resources that allow the comparison and integration of information on a genome-wide scale, enabling the user not only to find detailed information about individual genes, but also to make connections across groups of genes with common features and across different species. The Fungal Alignment Viewer displays alignments of sequences from multiple fungal genomes, while the Sequence Similarity Query tool displays PSI-BLAST alignments of each S.cerevisiae protein with similar proteins from any species whose sequences are contained in the non-redundant (nr) protein data set at NCBI. The Yeast Biochemical Pathways tool integrates groups of genes by their common roles in metabolism and displays the metabolic pathways in a graphical form. Finally, the Find Chromosomal Features search interface provides a versatile tool for querying multiple types of information in SGD.


Subject(s)
Computational Biology , Databases, Genetic , Genome, Fungal , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Amino Acid Sequence , Animals , Humans , Information Storage and Retrieval , Internet , Molecular Sequence Data , Saccharomyces cerevisiae Proteins/chemistry , Sequence Alignment , Sequence Homology , Software
13.
Cold Spring Harb Protoc ; 2016(1): pdb.prot088880, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26729909

ABSTRACT

The BioGRID database is an extensive repository of curated genetic and protein interactions for the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe, and the yeast Candida albicans SC5314, as well as for several other model organisms and humans. This protocol describes how to use the BioGRID website to query genetic or protein interactions for any gene of interest, how to visualize the associated interactions using an embedded interactive network viewer, and how to download data files for either selected interactions or the entire BioGRID interaction data set.


Subject(s)
Databases, Genetic , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Regulatory Networks , Animals , Internet , Protein Interaction Mapping , Yeasts/metabolism
14.
Cold Spring Harb Protoc ; 2016(1): pdb.top080754, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26729913

ABSTRACT

The Biological General Repository for Interaction Datasets (BioGRID) is a freely available public database that provides the biological and biomedical research communities with curated protein and genetic interaction data. Structured experimental evidence codes, an intuitive search interface, and visualization tools enable the discovery of individual gene, protein, or biological network function. BioGRID houses interaction data for the major model organism species--including yeast, nematode, fly, zebrafish, mouse, and human--with particular emphasis on the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe as pioneer eukaryotic models for network biology. BioGRID has achieved comprehensive curation coverage of the entire literature for these two major yeast models, which is actively maintained through monthly curation updates. As of September 2015, BioGRID houses approximately 335,400 biological interactions for budding yeast and approximately 67,800 interactions for fission yeast. BioGRID also supports an integrated posttranslational modification (PTM) viewer that incorporates more than 20,100 yeast phosphorylation sites curated through its sister database, the PhosphoGRID.


Subject(s)
Databases, Genetic/statistics & numerical data , Gene Regulatory Networks , Protein Interaction Mapping , Animals , Humans , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins , Yeasts/genetics , Yeasts/metabolism
16.
Curr Protoc Bioinformatics ; Chapter 1: 1.20.1-1.20.23, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21901739

ABSTRACT

Analysis of genomic data requires access to software tools that place the sequence-derived information in the context of biology. The Saccharomyces Genome Database (SGD) integrates functional information about budding yeast genes and their products with a set of analysis tools that facilitate exploring their biological details. This unit describes how the various types of functional data available at SGD can be searched, retrieved, and analyzed. Starting with the guided tour of the SGD Home page and Locus Summary page, this unit highlights how to retrieve data using YeastMine, how to visualize genomic information with GBrowse, how to explore gene expression patterns with SPELL, and how to use Gene Ontology tools to characterize large-scale datasets.


Subject(s)
Computational Biology/methods , Databases, Genetic , Genome, Fungal/genetics , Information Dissemination/methods , Information Storage and Retrieval/methods , Saccharomyces cerevisiae/genetics , Data Mining/methods , Microarray Analysis/methods , Search Engine/methods , Software
18.
Brief Bioinform ; 5(1): 9-22, 2004 Mar.
Article in English | MEDLINE | ID: mdl-15153302

ABSTRACT

A scientific database can be a powerful tool for biologists in an era where large-scale genomic analysis, combined with smaller-scale scientific results, provides new insights into the roles of genes and their products in the cell. However, the collection and assimilation of data is, in itself, not enough to make a database useful. The data must be incorporated into the database and presented to the user in an intuitive and biologically significant manner. Most importantly, this presentation must be driven by the user's point of view; that is, from a biological perspective. The success of a scientific database can therefore be measured by the response of its users - statistically, by usage numbers and, in a less quantifiable way, by its relationship with the community it serves and its ability to serve as a model for similar projects. Since its inception ten years ago, the Saccharomyces Genome Database (SGD) has seen a dramatic increase in its usage, has developed and maintained a positive working relationship with the yeast research community, and has served as a template for at least one other database. The success of SGD, as measured by these criteria, is due in large part to philosophies that have guided its mission and organisation since it was established in 1993. This paper aims to detail these philosophies and how they shape the organisation and presentation of the database.


Subject(s)
Databases, Nucleic Acid , Genome, Fungal , Saccharomyces cerevisiae/genetics , Genomics , Information Dissemination , Information Storage and Retrieval , Internet
SELECTION OF CITATIONS
SEARCH DETAIL