Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Med Genet ; 60(1): 48-56, 2023 01.
Article in English | MEDLINE | ID: mdl-34740919

ABSTRACT

BACKGROUND: Fetal akinesia (FA) results in variable clinical presentations and has been associated with more than 166 different disease loci. However, the underlying molecular cause remains unclear in many individuals. We aimed to further define the set of genes involved. METHODS: We performed in-depth clinical characterisation and exome sequencing on a cohort of 23 FA index cases sharing arthrogryposis as a common feature. RESULTS: We identified likely pathogenic or pathogenic variants in 12 different established disease genes explaining the disease phenotype in 13 index cases and report 12 novel variants. In the unsolved families, a search for recessive-type variants affecting the same gene was performed; and in five affected fetuses of two unrelated families, a homozygous loss-of-function variant in the kinesin family member 21A gene (KIF21A) was found. CONCLUSION: Our study underlines the broad locus heterogeneity of FA with well-established and atypical genotype-phenotype associations. We describe KIF21A as a new factor implicated in the pathogenesis of severe neurogenic FA sequence with arthrogryposis of multiple joints, pulmonary hypoplasia and facial dysmorphisms. This hypothesis is further corroborated by a recent report on overlapping phenotypes observed in Kif21a null piglets.


Subject(s)
Arthrogryposis , Humans , Animals , Swine , Mutation/genetics , Arthrogryposis/genetics , Arthrogryposis/pathology , Loss of Heterozygosity , Fetus , Phenotype , Pedigree , Kinesins/genetics
2.
Cancer Sci ; 102(2): 351-60, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21156006

ABSTRACT

Telomerase plays an important role during immortalization and malignant transformation as crucial steps in the development of human cancer. In a cellular model of oral-esophageal carcinogenesis, recapitulating the human disease, immortalization occurred independent of the activation of telomerase but through the recombination-based alternative lengthening of telomeres (ALT). In this stepwise model, additional overexpression of EGFR led to in vitro transformation and activation of telomerase with homogeneous telomere elongation in already immortalized oral squamous epithelial cells (OKF6-D1_dnp53). More interestingly, EGFR overexpression activated the PI3K/AKT pathway. This strongly suggested a role for telomerase in tumor progression in addition to just elongating telomeres and inferring an immortalized state. Therefore, we sought to identify the regulatory mechanisms involved in this activation of telomerase and in vitro transformation induced by EGFR. In the present study we demonstrate that telomerase expression and activity are induced through both direct phosphorylation of hTERT by phospho-AKT as well as PI3K-dependent transcriptional regulation involving Hif1-alpha as a key transcription factor. Furthermore, EGFR overexpression enhanced cell cycle progression and proliferation via phosphorylation and translocation of p21. Whereas immortalization was induced by ALT, in vitro transformation was associated with telomerase activation, supporting an additional role for telomerase in tumor progression besides elongating telomeres.


Subject(s)
Cell Transformation, Neoplastic/metabolism , ErbB Receptors/biosynthesis , Esophageal Neoplasms/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mouth Neoplasms/metabolism , Telomerase/metabolism , Blotting, Western , Cell Transformation, Neoplastic/genetics , Cells, Cultured , Enzyme Activation/physiology , ErbB Receptors/genetics , Esophageal Neoplasms/genetics , Fluorescent Antibody Technique , Gene Expression , Gene Expression Regulation, Neoplastic/physiology , Humans , Immunoprecipitation , In Situ Hybridization, Fluorescence , Mouth Neoplasms/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/physiology , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL