Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Br J Clin Pharmacol ; 90(5): 1268-1279, 2024 May.
Article in English | MEDLINE | ID: mdl-38359899

ABSTRACT

AIMS: Dose escalation at the initiation of allopurinol therapy can be protracted and resource intensive. Tools to predict the allopurinol doses required to achieve target serum urate concentrations would facilitate the implementation of more efficient dose-escalation strategies. The aim of this research was to develop and externally evaluate allopurinol dosing tools, one for use when the pre-urate-lowering therapy serum urate is known (Easy-Allo1) and one for when it is not known (Easy-Allo2). METHODS: A revised population pharmacokinetic-pharmacodynamic model was developed using data from 653 people with gout. Maintenance doses to achieve the serum urate target of <0.36 mmol L-1 in >80% of individuals were simulated and evaluated against external data. The predicted and observed allopurinol doses were compared using the mean prediction error (MPE) and root mean square error (RMSE). The proportion of Easy-Allo predicted doses within 100 mg of the observed was quantified. RESULTS: Allopurinol doses were predicted by total body weight, baseline urate, ethnicity and creatinine clearance. Easy-Allo1 produced unbiased and suitably precise dose predictions (MPE 2 mg day-1 95% confidence interval [CI] -13-17, RMSE 91%, 90% within 100 mg of the observed dose). Easy-Allo2 was positively biased by about 70 mg day-1 and slightly less precise (MPE 70 mg day-1 95% CI 52-88, RMSE 131%, 71% within 100 mg of the observed dose). CONCLUSIONS: The Easy-Allo tools provide a guide to the allopurinol maintenance dose requirement to achieve the serum urate target of <0.36 mmol L-1 and will aid in the development of novel dose-escalation strategies for allopurinol therapy.


Subject(s)
Allopurinol , Dose-Response Relationship, Drug , Gout Suppressants , Gout , Models, Biological , Uric Acid , Allopurinol/administration & dosage , Allopurinol/pharmacokinetics , Humans , Gout/drug therapy , Gout/blood , Gout Suppressants/administration & dosage , Gout Suppressants/pharmacokinetics , Uric Acid/blood , Male , Female , Middle Aged , Aged , Adult , Drug Dosage Calculations , Computer Simulation
2.
Clin Transl Sci ; 16(3): 422-428, 2023 03.
Article in English | MEDLINE | ID: mdl-36398357

ABSTRACT

The genetic determinants of the allopurinol dose-concentration relationship have not been extensively studied. We aimed to clarify what factors, including genetic variation in urate transporters, influence oxypurinol pharmacokinetics (PKs). A population PK model for oxypurinol was developed with NONMEM (version 7.3). The influence of urate transporter genetic variants for ABCG2 (rs2231142 and rs10011796), SLC2A9/GLUT9 (rs11942223), SLC17A1/NPT1 (rs1183201), SLC22A12/URAT1 (rs3825018), SLC22A11/OAT4 (rs17300741), and ABCC4/MRP4 (rs4148500), as well as other participant factors on oxypurinol PKs was assessed. Data from 325 people with gout were available. The presence of the T allele for ABCG2 (rs2231142) and SLC17A1/NPT1 (rs1183201) was associated with a 24% and 22% increase in oxypurinol clearance, respectively, in univariate analysis. This effect was not significant in the multivariate analysis. In the final model, oxypurinol PKs were predicted by creatinine clearance, diuretic use, ethnicity, and body weight. We have found that genetic variability in the transporters examined does not appear to influence oxypurinol PKs.


Subject(s)
Gout , Organic Anion Transporters , Humans , Oxypurinol/pharmacokinetics , Uric Acid , Gout/drug therapy , Gout/genetics , Allopurinol/pharmacokinetics , Organic Anion Transporters/genetics , Organic Cation Transport Proteins/genetics , Glucose Transport Proteins, Facilitative/genetics
SELECTION OF CITATIONS
SEARCH DETAIL