Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Nat Chem Biol ; 11(6): 432-7, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25915199

ABSTRACT

Protein arginine methyltransferase-5 (PRMT5) is reported to have a role in diverse cellular processes, including tumorigenesis, and its overexpression is observed in cell lines and primary patient samples derived from lymphomas, particularly mantle cell lymphoma (MCL). Here we describe the identification and characterization of a potent and selective inhibitor of PRMT5 with antiproliferative effects in both in vitro and in vivo models of MCL. EPZ015666 (GSK3235025) is an orally available inhibitor of PRMT5 enzymatic activity in biochemical assays with a half-maximal inhibitory concentration (IC50) of 22 nM and broad selectivity against a panel of other histone methyltransferases. Treatment of MCL cell lines with EPZ015666 led to inhibition of SmD3 methylation and cell death, with IC50 values in the nanomolar range. Oral dosing with EPZ015666 demonstrated dose-dependent antitumor activity in multiple MCL xenograft models. EPZ015666 represents a validated chemical probe for further study of PRMT5 biology and arginine methylation in cancer and other diseases.


Subject(s)
Antineoplastic Agents/pharmacology , Isoquinolines/pharmacology , Lymphoma, Mantle-Cell/pathology , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Pyrimidines/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Inhibitory Concentration 50 , Isoquinolines/chemistry , Isoquinolines/therapeutic use , Lymphoma, Mantle-Cell/drug therapy , Lymphoma, Mantle-Cell/enzymology , Male , Methylation , Mice, Inbred Strains , Models, Molecular , Molecular Structure , Protein Binding , Pyrimidines/chemistry , Pyrimidines/therapeutic use , Xenograft Model Antitumor Assays , snRNP Core Proteins/metabolism
2.
J Comput Aided Mol Des ; 28(2): 75-87, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24573412

ABSTRACT

c-Abl kinase is maintained in its normal inactive state in the cell through an assembled, compact conformation. We describe two chemical series that bind to the myristoyl site of the c-Abl kinase domain and stimulate c-Abl activation. We hypothesize that these molecules activate c-Abl either by blocking the C-terminal helix from adopting a bent conformation that is critical for the formation of the autoinhibited conformation or by simply providing no stabilizing interactions to the bent conformation of this helix. Structure-based molecular modeling guided the optimization of binding and activation of c-Abl of these two chemical series and led to the discovery of c-Abl activators with nanomolar potency. The small molecule c-Abl activators reported herein could be used as molecular tools to investigate the biological functions of c-Abl and therapeutic implications of its activation.


Subject(s)
Models, Molecular , Proto-Oncogene Proteins c-abl/metabolism , Small Molecule Libraries/pharmacology , Binding Sites , Crystallography, X-Ray , Hydrophobic and Hydrophilic Interactions , Protein Conformation , Protein Structure, Tertiary , Proto-Oncogene Proteins c-abl/chemistry , Pyrazoles/chemistry , Small Molecule Libraries/metabolism , Structure-Activity Relationship
3.
Biochem J ; 436(2): 363-9, 2011 Jun 01.
Article in English | MEDLINE | ID: mdl-21410436

ABSTRACT

The HIF (hypoxia-inducible factor) plays a central regulatory role in oxygen homoeostasis. HIF proteins are regulated by three Fe(II)- and α-KG (α-ketoglutarate)-dependent prolyl hydroxylase enzymes [PHD (prolyl hydroxylase domain) isoenzymes 1-3 or PHD1, PHD2 and PHD3] and one asparaginyl hydroxylase [FIH (factor inhibiting HIF)]. The prolyl hydroxylases control the abundance of HIF through oxygen-dependent hydroxylation of specific proline residues in HIF proteins, triggering subsequent ubiquitination and proteasomal degradation. FIH inhibits the HIF transcription activation through asparagine hydroxylation. Understanding the precise roles and regulation of these four Fe(II)- and α-KG-dependent hydroxylases is of great importance. In the present paper, we report the biochemical characterization of the first HIF protein substrates that contain the CODDD (C-terminal oxygen-dependent degradation domain), the NODDD (N-terminal oxygen-dependent degradation domain) and the CAD (C-terminal transactivation domain). Using LC-MS/MS (liquid chromatography-tandem MS) detection, we show that all three PHD isoenzymes have a strong preference for hydroxylation of the CODDD proline residue over the NODDD proline residue and the preference is observed for both HIF1α and HIF2α protein substrates. In addition, steady-state kinetic analyses show differential substrate selectivity for HIF and α-KG in reference to the three PHD isoforms and FIH.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/chemistry , Basic Helix-Loop-Helix Transcription Factors/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/chemistry , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Binding Sites , Humans , Hydroxylation , Isoenzymes/chemistry , Isoenzymes/metabolism , Procollagen-Proline Dioxygenase/chemistry , Procollagen-Proline Dioxygenase/metabolism , Substrate Specificity
4.
Nat Cancer ; 2(10): 1002-1017, 2021 10.
Article in English | MEDLINE | ID: mdl-34790902

ABSTRACT

DNA methylation, a key epigenetic driver of transcriptional silencing, is universally dysregulated in cancer. Reversal of DNA methylation by hypomethylating agents, such as the cytidine analogs decitabine or azacytidine, has demonstrated clinical benefit in hematologic malignancies. These nucleoside analogs are incorporated into replicating DNA where they inhibit DNA cytosine methyltransferases DNMT1, DNMT3A and DNMT3B through irreversible covalent interactions. These agents induce notable toxicity to normal blood cells thus limiting their clinical doses. Herein we report the discovery of GSK3685032, a potent first-in-class DNMT1-selective inhibitor that was shown via crystallographic studies to compete with the active-site loop of DNMT1 for penetration into hemi-methylated DNA between two CpG base pairs. GSK3685032 induces robust loss of DNA methylation, transcriptional activation and cancer cell growth inhibition in vitro. Due to improved in vivo tolerability compared with decitabine, GSK3685032 yields superior tumor regression and survival mouse models of acute myeloid leukemia.


Subject(s)
Azacitidine , Leukemia, Myeloid, Acute , Animals , Azacitidine/pharmacology , DNA/metabolism , DNA Methylation , DNA Modification Methylases/genetics , Decitabine/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Mice
5.
Arch Biochem Biophys ; 503(2): 207-12, 2010 Nov 15.
Article in English | MEDLINE | ID: mdl-20816748

ABSTRACT

USP7, also known as the hepes simplex virus associated ubiquitin-specific protease (HAUSP), deubiquitinates both mdm2 and p53, and plays an important role in regulating the level and activity of p53. Here, we report that deletion of the TRAF-like domain at the N-terminus of USP7, previously reported to contain the mdm2/p53 binding site, has no effect on USP7 mediated deubiquitination of Ub(n)-mdm2 and Ub(n)-p53. Amino acids 208-1102 were identified to be the minimal length of USP7 that retains proteolytic activity, similar to full length enzyme, towards not only a truncated model substrate Ub-AFC, but also Ub(n)-mdm2, Ub(n)-p53. In contrast, the catalytic domain of USP7 (amino acids 208-560) has 50-700 fold less proteolytic activity towards different substrates. Moreover, inhibition of the catalytic domain of USP7 by Ubal is also different from the full length or TRAF-like domain deleted proteins. Using glutathione pull-down methods, we demonstrate that the C-terminal domain of USP7 contains additional binding sites, a.a. 801-1050 and a.a. 880-1050 for mdm2 and p53, respectively. The additional USP7 binding site on mdm2 is mapped to be the C-terminal RING finger domain (a.a. 425-491). We propose that the C-terminal domain of USP7 is responsible for maintaining the active conformation for catalysis and inhibitor binding, and contains the prime side of the proteolytic active site.


Subject(s)
Proto-Oncogene Proteins c-mdm2/chemistry , Tumor Suppressor Protein p53/chemistry , Tumor Suppressor Protein p53/metabolism , Ubiquitin Thiolesterase/chemistry , Amino Acid Motifs/genetics , Binding Sites/genetics , Catalytic Domain/genetics , Genes, p53 , Humans , Protein Binding/genetics , Protein Structure, Tertiary/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Tumor Suppressor Protein p53/genetics , Ubiquitin-Specific Peptidase 7 , Ubiquitination
6.
Protein Expr Purif ; 73(2): 167-76, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20457255

ABSTRACT

Phosphoinositide 3-kinases have been targeted for therapeutic research because they are key components of a cell signaling cascade controlling proliferation, growth, and survival. Direct activation of the PI3Kalpha pathway contributes to the development and progression of solid tumors in breast, endometrial, colon, ovarian, and gastric cancers. In the context of a drug discovery effort, the availability of a robust crystallographic system is a means to understand the subtle differences between ATP competitive inhibitor interactions with the active site and their selectivity against other PI3Kinase enzymes. To generate a suitable recombinant design for this purpose, a p85alpha-p110alpha fusion system was developed which enabled the expression and purification of a stoichiometrically homogeneous, constitutively active enzyme for structure determination with potent ATP competitive inhibitors (Raha et al., in preparation) [56]. This approach has yielded preparations with activity and inhibition characteristics comparable to those of the full-length PI3Kalpha from which X-ray diffracting crystals were grown with inhibitors bound in the active site.


Subject(s)
Class II Phosphatidylinositol 3-Kinases/metabolism , Crystallography, X-Ray , Enzyme Inhibitors/pharmacology , Adenosine Triphosphate/metabolism , Animals , Artificial Gene Fusion , Baculoviridae/metabolism , Binding Sites , Cells, Cultured , Class II Phosphatidylinositol 3-Kinases/chemistry , Class II Phosphatidylinositol 3-Kinases/genetics , Class Ia Phosphatidylinositol 3-Kinase/genetics , Drug Design , Inhibitory Concentration 50 , Models, Molecular , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/metabolism , Spodoptera/cytology , Spodoptera/metabolism , X-Ray Diffraction
7.
Biochemistry ; 47(43): 11165-7, 2008 Oct 28.
Article in English | MEDLINE | ID: mdl-18834144

ABSTRACT

Prolyl hydroxylase domain proteins (PHD isozymes 1-3) regulate levels of the alpha-subunit of the hypoxia inducible factor (HIF) through proline hydroxylation, earmarking HIFalpha for proteosome-mediated degradation. Under hypoxic conditions, HIF stabilization leads to enhanced transcription and regulation of a multitude of processes, including erythropoiesis. Herein, we examine the biochemical characterization of PHD2 variants, Arg371His and Pro317Arg, identified from patients with familial erythrocytosis. The variants display differential effects on catalytic rate and substrate binding, implying that partial inhibition or selective inhibition with regard to HIFalpha isoforms of PHD2 could result in the phenotype displayed by patients with familial erythrocytosis.


Subject(s)
Genetic Variation , Polycythemia/genetics , Procollagen-Proline Dioxygenase/chemistry , Procollagen-Proline Dioxygenase/genetics , Amino Acid Motifs , Amino Acid Substitution , Arginine/metabolism , Binding Sites , Catalysis , Crystallography, X-Ray , Histidine/metabolism , Humans , Hydrogen Bonding , Hydroxylation , Hypoxia-Inducible Factor 1, alpha Subunit/chemistry , Isoenzymes/chemistry , Isoenzymes/metabolism , Kinetics , Models, Molecular , Polycythemia/metabolism , Procollagen-Proline Dioxygenase/metabolism , Proline/chemistry , Proline/metabolism , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Substrate Specificity
8.
SLAS Discov ; 23(1): 34-46, 2018 01.
Article in English | MEDLINE | ID: mdl-28957646

ABSTRACT

A persistent problem in early small-molecule drug discovery is the frequent lack of rank-order correlation between biochemical potencies derived from initial screens using purified proteins and the diminished potency and efficacy observed in subsequent disease-relevant cellular phenotypic assays. The introduction of the cellular thermal shift assay (CETSA) has bridged this gap by enabling assessment of drug target engagement directly in live cells based on ligand-induced changes in protein thermal stability. Initial success in applying CETSA across multiple drug target classes motivated our investigation into replacing the low-throughput, manually intensive Western blot readout with a quantitative, automated higher-throughput assay that would provide sufficient capacity to use CETSA as a primary hit qualification strategy. We introduce a high-throughput dose-response cellular thermal shift assay (HTDR-CETSA), a single-pot homogenous assay adapted for high-density microtiter plate format. The assay features titratable BacMam expression of full-length target proteins fused to the DiscoverX 42 amino acid ePL tag in HeLa suspension cells, facilitating enzyme fragment complementation-based chemiluminescent quantification of ligand-stabilized soluble protein. This simplified format can accommodate determination of full-dose CETSA curves for hundreds of individual compounds/analyst/day in replicates. HTDR-CETSA data generated for substrate site and alternate binding mode inhibitors of the histone-lysine N-methyltransferase SMYD3 in HeLa suspension cells demonstrate excellent correlation with rank-order potencies observed in cellular mechanistic assays and direct translation to target engagement of endogenous Smyd3 in cancer-relevant cell lines. We envision this workflow to be generically applicable to HTDR-CETSA screening spanning a wide variety of soluble intracellular protein target classes.


Subject(s)
Drug Discovery/methods , Enzyme Inhibitors/pharmacology , High-Throughput Screening Assays , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Cell Culture Techniques , Cell Line, Tumor , Dose-Response Relationship, Drug , Enzyme Activation , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Small Molecule Libraries , Workflow
9.
Protein Sci ; 16(12): 2761-9, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17965184

ABSTRACT

Serum and glucocorticoid-regulated kinase 1 (SGK1) is a serine/threonine protein kinase of the AGC family which participates in the control of epithelial ion transport and is implicated in proliferation and apoptosis. We report here the 1.9 A crystal structure of the catalytic domain of inactive human SGK1 in complex with AMP-PNP. SGK1 exists as a dimer formed by two intermolecular disulfide bonds between Cys258 in the activation loop and Cys193. Although most of the SGK1 structure closely resembles the common protein kinase fold, the structure around the active site is unique when compared to most protein kinases. The alphaC helix is not present in this inactive form of SGK1 crystal structure; instead, the segment corresponding to the C helix forms a beta-strand that is stabilized by the N-terminal segment of the activation loop through a short antiparallel beta-sheet. Since the differences from other kinases occur around the ATP binding site, this structure can provide valuable insight into the design of selective and highly potent ATP-competitive inhibitors of SGK1 kinase.


Subject(s)
Adenylyl Imidodiphosphate/chemistry , Immediate-Early Proteins/chemistry , Protein Serine-Threonine Kinases/chemistry , Adenosine Triphosphate/metabolism , Adenylyl Imidodiphosphate/metabolism , Amino Acid Sequence , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Dimerization , Humans , Hydrophobic and Hydrophilic Interactions , Immediate-Early Proteins/isolation & purification , Immediate-Early Proteins/metabolism , Models, Molecular , Molecular Sequence Data , Molecular Structure , Protein Conformation , Protein Serine-Threonine Kinases/isolation & purification , Protein Serine-Threonine Kinases/metabolism , Protein Structure, Secondary , Protein Structure, Tertiary , Sequence Alignment
10.
J Biomol Screen ; 12(8): 1050-8, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17989425

ABSTRACT

Tumor suppressor p53 is typically maintained at low levels in normal cells. In response to cellular stresses, such as DNA damage, p53 is stabilized and can stimulate responses leading to cell cycle arrest or apoptosis. Corresponding to its central role in preventing propagation of damaged cells, mutation or deletion of p53 is found in nearly 50% of all human tumors. Mdm2 (mouse-d-minute 2) and its human ortholog (hmdm2 or hdm2) catalyze the ubiquitination of p53, targeting it for degradation via the proteosome. Thus, the activity of mdm2 is inversely correlated with p53 levels. Based on this, inhibition of human mdm2 activity by a small-molecule therapeutic will lead to net stabilization of p53 and be the basis for development of a novel cancer therapeutic. Previous high-throughput screening assays of mdm2 measured the autoubiquitination activity of mdm2, which occurs in the absence of an acceptor substrate such as p53. The major drawback to this approach is that inhibitors of mdm2 autoubiquitination may lead to a net stabilization of mdm2 and thus have the opposite effect of inhibitors that interfere with p53 ubiquitination. The authors describe the development, validation, and execution of a high-throughput screening measuring the ubiquitination of p53 by mdm2, with p53 labeled with europium and the other substrate (Ub-UbcH5b) labeled with a Cy5 on the ubiquitin. After confirming that known inhibitors are detected with this assay, it was successfully automated and used to query >600,000 compounds from the GlaxoSmithKline collection for mdm2 inhibitors.


Subject(s)
Biological Assay/methods , Proto-Oncogene Proteins c-mdm2/metabolism , Tumor Suppressor Protein p53/metabolism , Ubiquitination , Catalysis/drug effects , Europium/pharmacology , Fluorescence Resonance Energy Transfer , Humans , Inhibitory Concentration 50 , Proto-Oncogene Proteins c-mdm2/pharmacology , Reproducibility of Results , Time Factors , Titrimetry , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitination/drug effects
11.
J Med Chem ; 48(18): 5644-7, 2005 Sep 08.
Article in English | MEDLINE | ID: mdl-16134930

ABSTRACT

Inhibitors of human methionine aminopeptidase type 2 (hMetAP2) are of interest as potential treatments for cancer. A new class of small molecule reversible inhibitors of hMetAP2 was discovered and optimized, the 4-aryl-1,2,3-triazoles. Compound 24, a potent inhibitor of cobalt-activated hMetAP2, also inhibits human and mouse endothelial cell growth. Using a mouse matrigel model, this reversible hMetAP2 inhibitor was also shown to inhibit angiogenesis in vivo.


Subject(s)
Aminopeptidases/antagonists & inhibitors , Angiogenesis Inhibitors/chemical synthesis , Metalloendopeptidases/antagonists & inhibitors , Triazoles/chemical synthesis , Aminopeptidases/chemistry , Angiogenesis Inhibitors/chemistry , Angiogenesis Inhibitors/pharmacology , Animals , Binding Sites , Biological Availability , Cell Proliferation/drug effects , Cells, Cultured , Cobalt/metabolism , Collagen , Crystallography, X-Ray , Drug Combinations , Endothelial Cells/cytology , Endothelial Cells/drug effects , Endothelium, Vascular/cytology , Enzyme Activation , Humans , Laminin , Metalloendopeptidases/chemistry , Mice , Models, Molecular , Molecular Structure , Proteoglycans , Rats , Structure-Activity Relationship , Triazoles/chemistry , Triazoles/pharmacology
12.
Cancer Cell ; 28(1): 57-69, 2015 Jul 13.
Article in English | MEDLINE | ID: mdl-26175415

ABSTRACT

Epigenetic dysregulation has emerged as an important mechanism in cancer. Alterations in epigenetic machinery have become a major focus for targeted therapies. The current report describes the discovery and biological activity of a cyclopropylamine containing inhibitor of Lysine Demethylase 1 (LSD1), GSK2879552. This small molecule is a potent, selective, orally bioavailable, mechanism-based irreversible inactivator of LSD1. A proliferation screen of cell lines representing a number of tumor types indicated that small cell lung carcinoma (SCLC) is sensitive to LSD1 inhibition. The subset of SCLC lines and primary samples that undergo growth inhibition in response to GSK2879552 exhibit DNA hypomethylation of a signature set of probes, suggesting this may be used as a predictive biomarker of activity.


Subject(s)
Antineoplastic Agents/administration & dosage , Benzoates/administration & dosage , Cyclopropanes/administration & dosage , DNA Methylation/drug effects , Enzyme Inhibitors/administration & dosage , Histone Demethylases/antagonists & inhibitors , Lung Neoplasms/drug therapy , Small Cell Lung Carcinoma/drug therapy , Administration, Oral , Animals , Antineoplastic Agents/pharmacology , Benzoates/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclopropanes/pharmacology , Enzyme Inhibitors/pharmacology , Epigenesis, Genetic/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Histone Demethylases/genetics , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Molecular Sequence Data , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/pathology , Xenograft Model Antitumor Assays
13.
Assay Drug Dev Technol ; 11(5): 308-25, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23772552

ABSTRACT

Small ubiquitin-like modifier (SUMO) belongs to the family of ubiquitin-like proteins (Ubls) that can be reversibly conjugated to target-specific lysines on substrate proteins. Although covalently sumoylated products are readily detectible in gel-based assays, there has been little progress toward the development of robust quantitative sumoylation assay formats for the evaluation of large compound libraries. In an effort to identify inhibitors of ubiquitin carrier protein 9 (Ubc9)-dependent sumoylation, a high-throughput fluorescence polarization assay was developed, which allows detection of Lys-1201 sumoylation, corresponding to the major site of functional sumoylation within the transcriptional repressor trichorhino-phalangeal syndrome type I protein (TRPS1). A minimal hexapeptide substrate peptide, TMR-VVK1201TEK, was used in this assay format to afford high-throughput screening of the GlaxoSmithKline diversity compound collection. A total of 728 hits were confirmed but no specific noncovalent inhibitors of Ubc9 dependent trans-sumoylation were found. However, several diaminopyrimidine compounds were identified as inhibitors in the assay with IC50 values of 12.5 µM. These were further characterized to be competent substrates which were subject to sumoylation by SUMO-Ubc9 and which were competitive with the sumoylation of the TRPS1 peptide substrates.


Subject(s)
DNA-Binding Proteins/antagonists & inhibitors , Drug Evaluation, Preclinical/methods , Protein Interaction Mapping/methods , Spectrometry, Fluorescence/methods , Sumoylation/drug effects , Transcription Factors/antagonists & inhibitors , Ubiquitin-Conjugating Enzymes/antagonists & inhibitors , Binding Sites , Protein Binding , Repressor Proteins
14.
J Biomol Screen ; 16(1): 53-64, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20938045

ABSTRACT

A 2-step kinase assay was developed and used in a high-throughput screen (HTS) of more than 1 million compounds in an effort to identify c-Abl tyrosine kinase activators. This assay employed a 2-step phosphorylation reaction: in the first step, purified recombinant c-Abl was activated by incubating with compound in the presence of adenosine triphosphate (ATP). In the second step, the TAMRA-labeled IMAP Abltide substrate was added to allow phosphorylation of the substrate to occur. The assay was calibrated such that inactive c-Abl protein was activated by ATP alone to a degree that it not only demonstrated a measurable c-Abl activity but also maintained a robust assay window for screening. The screen resulted in 8624 primary hits with >30% response. Further analysis showed that 1024 had EC(50) <10 µM with a max % response of >50%. These hits were structurally and chemically diverse with possibly different mechanisms for activating c-Abl. In addition, selective hits were shown to be cell permeable and were able to induce c-Abl activation as determined by In-Cell Western (ICW) analysis of HEK-MSRII cells transduced with BacMam virus expressing full-length c-Abl.


Subject(s)
Enzyme Activators/pharmacology , High-Throughput Screening Assays/methods , Proto-Oncogene Proteins c-abl/agonists , Proto-Oncogene Proteins c-abl/metabolism , Adenosine Triphosphate/metabolism , Baculoviridae/genetics , Biological Assay , Drug Discovery , Genetic Vectors/genetics , HEK293 Cells , Humans , Phosphorylation , Small Molecule Libraries/pharmacology , Transfection
15.
Chem Biol ; 18(2): 177-86, 2011 Feb 25.
Article in English | MEDLINE | ID: mdl-21338916

ABSTRACT

c-Abl kinase activity is regulated by a unique mechanism involving the formation of an autoinhibited conformation in which the N-terminal myristoyl group binds intramolecularly to the myristoyl binding site on the kinase domain and induces the bending of the αI helix that creates a docking surface for the SH2 domain. Here, we report a small-molecule c-Abl activator, DPH, that displays potent enzymatic and cellular activity in stimulating c-Abl activation. Structural analyses indicate that DPH binds to the myristoyl binding site and prevents the formation of the bent conformation of the αI helix through steric hindrance, a mode of action distinct from the previously identified allosteric c-Abl inhibitor, GNF-2, that also binds to the myristoyl binding site. DPH represents the first cell-permeable, small-molecule tool compound for c-Abl activation.


Subject(s)
Drug Discovery , Hydantoins/metabolism , Hydantoins/pharmacology , Proto-Oncogene Proteins c-abl/metabolism , Pyrazoles/metabolism , Pyrazoles/pharmacology , Amino Acid Sequence , Binding Sites , Crystallography, X-Ray , Enzyme Activation/drug effects , Hep G2 Cells , Humans , Hydantoins/chemistry , Models, Molecular , Molecular Sequence Data , Permeability , Phosphorylation/drug effects , Protein Binding , Protein Structure, Tertiary , Proto-Oncogene Proteins c-abl/chemistry , Proto-Oncogene Proteins c-crk/metabolism , Pyrazoles/chemistry
16.
Biochemistry ; 45(30): 9238-45, 2006 Aug 01.
Article in English | MEDLINE | ID: mdl-16866370

ABSTRACT

Mdm2 negatively regulates p53 by inhibiting its transcriptional activity and promoting its degradation by functioning as an E3 ubiquitin ligase. The primary p53 binding site on mdm2 is located in its N-terminal domain. Through binding to p53 at its N-terminal transactivation domain, mdm2 directly blocks the transcriptional activation function of p53. We discovered that truncated mdm2 protein constructs without the N-terminal p53 binding domain are at least as active as full-length mdm2 in catalyzing p53 ubiquitination. Furthermore, the deletion of the central acidic domain significantly reduces the E3 ligase activity of mdm2 toward p53. We have also performed GST pull-down experiments to probe the direct binding of various mdm2 domain constructs toward full length p53 and found that mdm2 constructs without the N-terminal p53 binding domain retain the ability to bind to p53. Our kinetic and binding data localize the second p53 binding site between amino acids 211 and 361, including the acidic domain and the zinc finger region. Our work, consistent with other reports, suggests that the p53 tetramer interacts with at least two sites on mdm2. Although the interaction between the N-termini of mdm2 and p53 blocks the transactivation activity of p53, the interaction between the central domain of mdm2 and the core domain of p53 is critical for the ubiquitination and degradation of p53. This second mdm2-p53 interaction site represents an alternative target for small molecule modulators of the mdm2-p53 pathway.


Subject(s)
Proto-Oncogene Proteins c-mdm2/metabolism , Tumor Suppressor Protein p53/metabolism , Ubiquitin/metabolism , Animals , Binding Sites/genetics , Cell Line , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Humans , Imidazoles/chemistry , Kinetics , Piperazines/chemistry , Protein Interaction Mapping , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Proto-Oncogene Proteins c-mdm2/chemistry , Proto-Oncogene Proteins c-mdm2/genetics , Sequence Deletion , Spodoptera , Tumor Suppressor Protein p53/chemistry , Tumor Suppressor Protein p53/genetics , Ubiquitin/chemistry , Ubiquitin/genetics , Ubiquitin-Protein Ligases/antagonists & inhibitors , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL