Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
J Appl Biomech ; 33(5): 354-360, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28290736

ABSTRACT

Gait analysis together with musculoskeletal modeling is widely used for research. In the absence of medical images, surface marker locations are used to scale a generic model to the individual's anthropometry. Studies evaluating the accuracy and reliability of different scaling approaches in a pediatric and/or clinical population have not yet been conducted and, therefore, formed the aim of this study. Magnetic resonance images (MRI) and motion capture data were collected from 12 participants with cerebral palsy and 6 typically developed participants. Accuracy was assessed by comparing the scaled model's segment measures to the corresponding MRI measures, whereas reliability was assessed by comparing the model's segments scaled with the experimental marker locations from the first and second motion capture session. The inclusion of joint centers into the scaling process significantly increased the accuracy of thigh and shank segment length estimates compared to scaling with markers alone. Pelvis scaling approaches which included the pelvis depth measure led to the highest errors compared to the MRI measures. Reliability was similar between scaling approaches with mean ICC of 0.97. The pelvis should be scaled using pelvic width and height and the thigh and shank segment should be scaled using the proximal and distal joint centers.


Subject(s)
Gait/physiology , Lower Extremity/physiology , Models, Anatomic , Pelvis/physiology , Anatomic Landmarks , Biomechanical Phenomena , Humans , Lower Extremity/diagnostic imaging , Magnetic Resonance Imaging , Pelvis/diagnostic imaging , Reproducibility of Results , Thigh/diagnostic imaging , Thigh/physiology
2.
Med Sci Sports Exerc ; 54(11): 1831-1841, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35700435

ABSTRACT

PURPOSE: The magnitude and location of hip contact force influence the local mechanical environment of the articular tissue, driving remodeling. We used a neuromusculoskeletal model to investigate hip contact force magnitudes and their regional loading patterns on the articular surfaces in those with femoroacetabular impingement (FAI) syndrome and controls during walking. METHODS: An EMG-assisted neuromusculoskeletal model was used to estimate hip contact forces in eligible participants with FAI syndrome ( n = 41) and controls ( n = 24), walking at self-selected speed. Hip contact forces were used to determine the average and spread of regional loading for femoral and acetabular articular surfaces. Hip contact force magnitude and region of loading were compared between groups using statistical parametric mapping and independent t -tests, respectively ( P < 0.05). RESULTS: All of the following findings are reported compared with controls. Those with FAI syndrome walked with lower-magnitude hip contact forces (mean difference, -0.7 N·BW -1 ; P < 0.001) during first and second halves of stance, and with lower anteroposterior, vertical, and mediolateral contact force vector components. Participants with FAI syndrome also had less between-participant variation in average regional loading, which was located more anteriorly (3.8°, P = 0.035) and laterally (2.2°, P = 0.01) on the acetabulum but more posteriorly (-4.8°, P = 0.01) on the femoral head. Participants with FAI syndrome had a smaller spread of regional loading across both the acetabulum (-1.9 mm, P = 0.049) and femoral head (1 mm, P < 0.001) during stance. CONCLUSIONS: Compared with controls, participants with FAI syndrome walked with lower-magnitude hip contact forces that were constrained to smaller regions on the acetabulum and femoral head. Differences in regional loading patterns might contribute to the mechanobiological processes driving cartilage maladaptation in those with FAI syndrome.


Subject(s)
Femoracetabular Impingement , Acetabulum , Femur , Hip Joint , Humans , Walking
3.
J Biomech ; 83: 134-142, 2019 01 23.
Article in English | MEDLINE | ID: mdl-30527636

ABSTRACT

Abnormal hip joint contact forces (HJCF) are considered a primary mechanical contributor to the progression of hip osteoarthritis (OA). Compared to healthy controls, people with hip OA often present with altered muscle activation patterns and greater muscle co-contraction, both of which can influence HJCF. Neuromusculoskeletal (NMS) modelling is non-invasive approach to estimating HJCF, whereby different neural control solutions can be used to estimate muscle forces. Static optimisation, available within the popular NMS modelling software OpenSim, is a commonly used neural control solution, but may not account for an individual's unique muscle activation patterns and/or co-contraction that are often evident in pathological population. Alternatively, electromyography (EMG)-assisted neural control solutions, available within CEINMS software, have been shown to account for individual activation patterns in healthy people. Nonetheless, their application in people with hip OA, with conceivably greater levels of co-contraction, is yet to be explored. The aim of this study was to compare HJCF estimations using static optimisation (in OpenSim) and EMG-assisted (in CEINMS) neural control solutions during walking in people with hip OA. EMG-assisted neural control solution was more consistent with both EMG and joint moment data than static optimisation, and also predicted significantly higher HJCF peaks (p < 0.001). The EMG-assisted neural control solution also accounted for more muscle co-contraction than static optimisation (p = 0.03), which probably contributed to these higher HJCF peaks. Findings suggest that the EMG-assisted neural control solution may estimate more physiologically plausible HJCF than static optimisation in a population with high levels of co-contraction, such as hip OA.


Subject(s)
Electromyography , Hip Joint/physiopathology , Mechanical Phenomena , Muscle Contraction , Osteoarthritis, Hip/physiopathology , Biomechanical Phenomena , Calibration , Humans , Muscle, Skeletal/physiopathology , Walking/physiology
4.
J Biomech ; 80: 111-120, 2018 10 26.
Article in English | MEDLINE | ID: mdl-30213647

ABSTRACT

In-vivo hip joint contact forces (HJCF) can be estimated using computational neuromusculoskeletal (NMS) modelling. However, different neural solutions can result in different HJCF estimations. NMS model predictions are also influenced by the selection of neuromuscular parameters, which are either based on cadaveric data or calibrated to the individual. To date, the best combination of neural solution and parameter calibration to obtain plausible estimations of HJCF have not been identified. The aim of this study was to determine the effect of three electromyography (EMG)-informed neural solution modes (EMG-driven, EMG-hybrid, and EMG-assisted) and static optimisation, each using three different parameter calibrations (uncalibrated, minimise joint moments error, and minimise joint moments error and peak HJCF), on the estimation of HJCF in a healthy population (n = 23) during walking. When compared to existing in-vivo data, the EMG-assisted mode and static optimisation produced the most physiologically plausible HJCF when using a NMS model calibrated to minimise joint moments error and peak HJCF. EMG-assisted mode produced first and second peaks of 3.55 times body weight (BW) and 3.97 BW during walking; static optimisation produced 3.75 BW and 4.19 BW, respectively. However, compared to static optimisation, EMG-assisted mode generated muscle excitations closer to recorded EMG signals (average across hip muscles R2 = 0.60 ±â€¯0.37 versus R2 = 0.12 ±â€¯0.14). Findings suggest that the EMG-assisted mode combined with minimise joint moments error and peak HJCF calibration is preferable for the estimation of HJCF and generation of realistic load distribution across muscles.


Subject(s)
Hip Joint/physiology , Models, Biological , Muscle, Skeletal/physiology , Patient-Specific Modeling , Walking/physiology , Aged , Computer Simulation , Electromyography , Humans , Middle Aged
5.
Gait Posture ; 36(3): 405-8, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22542242

ABSTRACT

Crouch gait decreases walking efficiency due to the increased knee and hip flexion during the stance phase of gait. Crouch gait is generally considered to be disadvantageous for children with cerebral palsy; however, a crouched posture may allow biomechanical advantages that lead some children to adopt a crouch gait. To investigate one possible advantage of crouch gait, a musculoskeletal model created in OpenSim was placed in 15 different postures from upright to severe crouch during initial, middle, and final stance of the gait cycle for a total of 45 different postures. A series of optimizations was performed for each posture to maximize transverse plane ground reaction forces in the eight compass directions by modifying muscle forces acting on the model. We compared the force profile areas across all postures. Larger force profile areas were allowed by postures from mild crouch (for initial stance) to crouch (for final stance). The overall ability to generate larger ground reaction force profiles represents a mechanical advantage of a crouched posture. This increase in muscle capacity while in a crouched posture may allow a patient to generate new movements to compensate for impairments associated with cerebral palsy, such as motor control deficits.


Subject(s)
Gait Disorders, Neurologic/physiopathology , Gait/physiology , Muscle Contraction/physiology , Posture/physiology , Range of Motion, Articular/physiology , Biomechanical Phenomena , Cerebral Palsy/physiopathology , Humans , Imaging, Three-Dimensional , Models, Biological , Muscle, Skeletal/physiology , Postural Balance/physiology , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL