Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
J Biol Chem ; 289(33): 22648-22658, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-24966333

ABSTRACT

E1 enzymes activate ubiquitin or ubiquitin-like proteins (Ubl) via an adenylate intermediate and initiate the enzymatic cascade of Ubl conjugation to target proteins or lipids. Ubiquitin-fold modifier 1 (Ufm1) is activated by the E1 enzyme Uba5, and this pathway is proposed to play an important role in the endoplasmic reticulum (ER) stress response. However, the mechanisms of Ufm1 activation by Uba5 and subsequent transfer to the conjugating enzyme (E2), Ufc1, have not been studied in detail. In this work, we found that Uba5 activated Ufm1 via a two-step mechanism and formed a binary covalent complex of Uba5∼Ufm1 thioester. This feature contrasts with the three-step mechanism and ternary complex formation in ubiquitin-activating enzyme Uba1. Uba5 displayed random ordered binding with Ufm1 and ATP, and its ATP-pyrophosphate (PPi) exchange activity was inhibited by both AMP and PPi. Ufm1 activation and Uba5∼Ufm1 thioester formation were stimulated in the presence of Ufc1. Furthermore, binding of ATP to Uba5∼Ufm1 thioester was required for efficient transfer of Ufm1 from Uba5 to Ufc1 via transthiolation. Consistent with the two-step activation mechanism, the mechanism-based pan-E1 inhibitor, adenosine 5'-sulfamate (ADS), reacted with the Uba5∼Ufm1 thioester and formed a covalent, tight-binding Ufm1-ADS adduct in the active site of Uba5, which prevented further substrate binding or catalysis. ADS was also shown to inhibit the Uba5 conjugation pathway in the HCT116 cells through formation of the Ufm1-ADS adduct. This suggests that further development of more selective Uba5 inhibitors could be useful in interrogating the roles of the Uba5 pathway in cells.


Subject(s)
Multiprotein Complexes , Proteins , Ubiquitin-Activating Enzymes , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/genetics , Adenosine Triphosphate/metabolism , Catalytic Domain , Cell Line , Enzyme Activation , Humans , Models, Chemical , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Protein Binding , Protein Structure, Quaternary , Proteins/chemistry , Proteins/genetics , Proteins/metabolism , Ubiquitin-Activating Enzymes/chemistry , Ubiquitin-Activating Enzymes/genetics , Ubiquitin-Activating Enzymes/metabolism , Ubiquitin-Conjugating Enzymes/chemistry , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism
2.
Bioorg Med Chem Lett ; 24(23): 5450-4, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25454270

ABSTRACT

Acyl derivatives of 4-(aminomethyl)-N-hydroxybenzamide are potent sub-type selective HDAC6 inhibitors. Constrained heterocyclic analogs based on 1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazine show further enhanced HDAC6 selectivity and inhibitory activity in cells. Homology models suggest that the heterocyclic spacer can more effectively access the wider catalytic channel of HDAC6 compared to other HDAC sub-types.


Subject(s)
Histone Deacetylase Inhibitors/metabolism , Hydroxamic Acids/pharmacology , Pyrazines/metabolism , Protein Isoforms
3.
J Med Chem ; 64(5): 2501-2520, 2021 03 11.
Article in English | MEDLINE | ID: mdl-33631934

ABSTRACT

SUMOylation is a reversible post-translational modification that regulates protein function through covalent attachment of small ubiquitin-like modifier (SUMO) proteins. The process of SUMOylating proteins involves an enzymatic cascade, the first step of which entails the activation of a SUMO protein through an ATP-dependent process catalyzed by SUMO-activating enzyme (SAE). Here, we describe the identification of TAK-981, a mechanism-based inhibitor of SAE which forms a SUMO-TAK-981 adduct as the inhibitory species within the enzyme catalytic site. Optimization of selectivity against related enzymes as well as enhancement of mean residence time of the adduct were critical to the identification of compounds with potent cellular pathway inhibition and ultimately a prolonged pharmacodynamic effect and efficacy in preclinical tumor models, culminating in the identification of the clinical molecule TAK-981.


Subject(s)
Antineoplastic Agents/therapeutic use , Enzyme Inhibitors/therapeutic use , Neoplasms/drug therapy , Sulfonic Acids/therapeutic use , Sumoylation/drug effects , Ubiquitin-Activating Enzymes/antagonists & inhibitors , Adenosine/analogs & derivatives , Adenosine/metabolism , Adenosine/therapeutic use , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Cell Line, Tumor , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/metabolism , Humans , Mice , Molecular Structure , Protein Binding , Protein Processing, Post-Translational/drug effects , Structure-Activity Relationship , Sulfonic Acids/chemical synthesis , Sulfonic Acids/metabolism , Ubiquitin-Activating Enzymes/metabolism , Xenograft Model Antitumor Assays
4.
Mol Cell Biol ; 27(12): 4513-25, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17438137

ABSTRACT

Aurora A kinase plays an essential role in the proper assembly and function of the mitotic spindle, as its perturbation causes defects in centrosome separation, spindle pole organization, and chromosome congression. Moreover, Aurora A disruption leads to cell death via a mechanism that involves aneuploidy generation. However, the link between the immediate functional consequences of Aurora A inhibition and the development of aneuploidy is not clearly defined. In this study, we delineate the sequence of events that lead to aneuploidy following Aurora A inhibition using MLN8054, a selective Aurora A small-molecule inhibitor. Human tumor cells treated with MLN8054 show a high incidence of abnormal mitotic spindles, often with unseparated centrosomes. Although these spindle defects result in mitotic delays, cells ultimately divide at a frequency near that of untreated cells. We show that many of the spindles in the dividing cells are bipolar, although they lack centrosomes at one or more spindle poles. MLN8054-treated cells frequently show alignment defects during metaphase, lagging chromosomes in anaphase, and chromatin bridges during telophase. Consistent with the chromosome segregation defects, cells treated with MLN8054 develop aneuploidy over time. Taken together, these results suggest that Aurora A inhibition kills tumor cells through the development of deleterious aneuploidy.


Subject(s)
Aneuploidy , Benzazepines/pharmacology , Chromosomes, Human/drug effects , Protein Serine-Threonine Kinases/antagonists & inhibitors , Spindle Apparatus/drug effects , Aurora Kinases , Blotting, Western , Centrosome/drug effects , Chromosome Segregation/drug effects , Fluorescent Antibody Technique, Indirect , HCT116 Cells , Humans , Microscopy, Video , Models, Biological , RNA Interference , Time Factors
5.
Nat Commun ; 11(1): 5339, 2020 10 21.
Article in English | MEDLINE | ID: mdl-33087718

ABSTRACT

Propionic acidemia/aciduria (PA) is an ultra-rare, life-threatening, inherited metabolic disorder caused by deficiency of the mitochondrial enzyme, propionyl-CoA carboxylase (PCC) composed of six alpha (PCCA) and six beta (PCCB) subunits. We herein report an enzyme replacement approach to treat PA using a combination of two messenger RNAs (mRNAs) (dual mRNAs) encoding both human PCCA (hPCCA) and PCCB (hPCCB) encapsulated in biodegradable lipid nanoparticles (LNPs) to produce functional PCC enzyme in liver. In patient fibroblasts, dual mRNAs encoded proteins localize in mitochondria and produce higher PCC enzyme activity vs. single (PCCA or PCCB) mRNA alone. In a hypomorphic murine model of PA, dual mRNAs normalize ammonia similarly to carglumic acid, a drug approved in Europe for the treatment of hyperammonemia due to PA. Dual mRNAs additionally restore functional PCC enzyme in liver and thus reduce primary disease-associated toxins in a dose-dependent manner in long-term 3- and 6-month repeat-dose studies in PA mice. Dual mRNAs are well-tolerated in these studies with no adverse findings. These studies demonstrate the potential of mRNA technology to chronically administer multiple mRNAs to produce large complex enzymes, with applicability to other genetic disorders.


Subject(s)
Enzyme Replacement Therapy/methods , Propionic Acidemia/therapy , RNA, Messenger/therapeutic use , Animals , Disease Models, Animal , Glutamates/therapeutic use , Humans , Kinetics , Lipids/chemistry , Liver/enzymology , Methylmalonyl-CoA Decarboxylase/chemistry , Methylmalonyl-CoA Decarboxylase/genetics , Methylmalonyl-CoA Decarboxylase/metabolism , Mice , Mice, Knockout , Mice, Transgenic , Mitochondria/enzymology , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Propionic Acidemia/genetics , Propionic Acidemia/metabolism , Protein Subunits/chemistry , Protein Subunits/genetics , RNA, Messenger/administration & dosage , RNA, Messenger/genetics
6.
Cancer Res ; 67(11): 5362-70, 2007 Jun 01.
Article in English | MEDLINE | ID: mdl-17545617

ABSTRACT

Aurora A is a serine/threonine protein kinase essential for normal mitotic progression. Aberrant increased expression of Aurora A, which occurs frequently in human cancers, results in abnormal mitoses leading to chromosome instability and possibly tumorigenesis. Consequently, Aurora A has received considerable attention as a potential target for anticancer therapeutic intervention. Aurora A coordinates several essential mitotic activities through phosphorylation of a variety of proteins, including TACC3, which modulates microtubule stabilization of the mitotic spindle. Recent studies identified a conserved serine in Xenopus (Ser(626)) and Drosophila (Ser(863)) TACC3 orthologues that is phosphorylated by Aurora A. We show that this conserved serine on human TACC3 (Ser(558)) is also phosphorylated by Aurora A. Moreover, phosphorylation of TACC3 by Aurora A in human cells is essential for its proper localization to centrosomes and proximal mitotic spindles. Inhibition of Aurora A with the selective small molecule inhibitor MLN8054 in cultured human tumor cells resulted in mislocalization of TACC3 away from mitotic spindles in a concentration-dependent manner. Furthermore, oral administration of MLN8054 to nude mice bearing HCT-116 human tumor xenografts caused a dose-dependent mislocalization of TACC3 away from spindle poles that correlated with tumor growth inhibition. As TACC3 localization to mitotic spindles depends on Aurora A-mediated phosphorylation, quantifying TACC3 mislocalization represents a novel pharmacodynamic approach for measuring Aurora A activity in cancer patients treated with inhibitors of Aurora A kinase.


Subject(s)
Benzazepines/pharmacology , Colonic Neoplasms/drug therapy , Colonic Neoplasms/enzymology , Microtubule-Associated Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Spindle Apparatus/metabolism , Amino Acid Sequence , Animals , Aurora Kinase A , Aurora Kinases , Centrosome/metabolism , Dose-Response Relationship, Drug , HCT116 Cells , HT29 Cells , Humans , Mice , Molecular Sequence Data , Phosphorylation , Protein Serine-Threonine Kinases/antagonists & inhibitors , Serine/metabolism , Xenograft Model Antitumor Assays
7.
Nat Med ; 24(2): 186-193, 2018 02.
Article in English | MEDLINE | ID: mdl-29334375

ABSTRACT

The ubiquitin-proteasome system (UPS) comprises a network of enzymes that is responsible for maintaining cellular protein homeostasis. The therapeutic potential of this pathway has been validated by the clinical successes of a number of UPS modulators, including proteasome inhibitors and immunomodulatory imide drugs (IMiDs). Here we identified TAK-243 (formerly known as MLN7243) as a potent, mechanism-based small-molecule inhibitor of the ubiquitin activating enzyme (UAE), the primary mammalian E1 enzyme that regulates the ubiquitin conjugation cascade. TAK-243 treatment caused depletion of cellular ubiquitin conjugates, resulting in disruption of signaling events, induction of proteotoxic stress, and impairment of cell cycle progression and DNA damage repair pathways. TAK-243 treatment caused death of cancer cells and, in primary human xenograft studies, demonstrated antitumor activity at tolerated doses. Due to its specificity and potency, TAK-243 allows for interrogation of ubiquitin biology and for assessment of UAE inhibition as a new approach for cancer treatment.


Subject(s)
Neoplasms/drug therapy , Nucleosides/pharmacology , Small Molecule Libraries/pharmacology , Sulfonamides/pharmacology , Ubiquitin-Activating Enzymes/antagonists & inhibitors , Animals , Cell Line, Tumor , DNA Damage/drug effects , DNA Repair/drug effects , Humans , Imides/pharmacology , Mice , Neoplasms/genetics , Neoplasms/pathology , Proteasome Endopeptidase Complex/chemistry , Proteasome Endopeptidase Complex/drug effects , Proteasome Endopeptidase Complex/genetics , Protein Binding , Pyrazoles , Pyrimidines , Sulfides , Ubiquitin/antagonists & inhibitors , Ubiquitin/chemistry , Ubiquitin/genetics , Ubiquitin-Activating Enzymes/chemistry , Ubiquitin-Activating Enzymes/genetics , Xenograft Model Antitumor Assays
8.
Clin Cancer Res ; 10(3): 828-39, 2004 Feb 01.
Article in English | MEDLINE | ID: mdl-14871958

ABSTRACT

PURPOSE: High-level expression of the telomerase reverse transcriptase (hTERT) in >85% of human cancers, in contrast with its restricted expression in normal adult tissues, points to hTERT as a broadly applicable molecular target for anticancer immunotherapy. CTLs recognize peptides derived from hTERT and kill hTERT+ tumor cells of multiple histologies in vitro. Moreover, because survival of hTERT+ tumor cells requires functionally active telomerase, hTERT mutation or loss as a means of escape may be incompatible with sustained tumor growth. EXPERIMENTAL DESIGN: A Phase I clinical trial was performed to evaluate the clinical and immunological impact of vaccinating advanced cancer patients with the HLA-A2-restricted hTERT I540 peptide presented with keyhole limpet hemocyanin by ex vivo generated autologous dendritic cells. RESULTS: As measured by peptide/MHC tetramer, enzyme-linked immunospot, and cytotoxicity assays, hTERT-specific T lymphocytes were induced in 4 of 7 patients with advanced breast or prostate carcinoma after vaccination with dendritic cells pulsed with hTERT peptide. Tetramer-guided high-speed sorting and polyclonal expansion achieved highly enriched populations of hTERT-specific cells that killed tumor cells in an MHC- restricted fashion. Despite concerns of telomerase activity in rare normal cells, no significant toxicity was observed. Partial tumor regression in 1 patient was associated with the induction of CD8+ tumor infiltrating lymphocytes. CONCLUSIONS: These results demonstrate the immunological feasibility of vaccinating patients against telomerase and provide rationale for targeting self-antigens with critical roles in oncogenesis.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines , Neoplasms/immunology , Neoplasms/prevention & control , Telomerase/metabolism , Adult , Aged , Breast Neoplasms/immunology , Cell Separation , DNA-Binding Proteins , Enzyme-Linked Immunosorbent Assay , Female , Flow Cytometry , HLA-A2 Antigen/metabolism , Hemocyanins/metabolism , Humans , Immunoenzyme Techniques , Major Histocompatibility Complex , Male , Middle Aged , Mutation , Peptides/chemistry , Phenotype , Prostatic Neoplasms/immunology , Telomerase/genetics , Vaccines
9.
ACS Med Chem Lett ; 6(6): 630-4, 2015 Jun 11.
Article in English | MEDLINE | ID: mdl-26101564

ABSTRACT

The Aurora kinases are essential for cell mitosis, and the dysregulation of Aurora A and B have been linked to the etiology of human cancers. Investigational agents MLN8054 (8) and alisertib (MLN8237, 10) have been identified as high affinity, selective, orally bioavailable inhibitors of Aurora A that have advanced into human clinical trials. Alisertib (10) is currently being evaluated in multiple Phase II and III clinical trials in hematological malignancies and solid tumors.

10.
J Med Chem ; 56(18): 7201-11, 2013 Sep 26.
Article in English | MEDLINE | ID: mdl-23964961

ABSTRACT

A screen for HDAC6 inhibitors identified acyl derivatives of 4-(aminomethyl)-N-hydroxybenzamide as potent leads with unexpected selectivity over the other subtypes. We designed and synthesized constrained heterocyclic analogues such as tetrahydroisoquinolines that show further enhanced HDAC6 selectivity and inhibitory activity in cellular assays. Selectivity may be attributed to the benzylic spacer more effectively accessing the wider channel of HDAC6 compared to other HDAC subtypes as well as hydrophobic capping groups interacting with the protein surface near the rim of the active site.


Subject(s)
Benzamides/chemical synthesis , Benzamides/pharmacology , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Hydroxamic Acids/chemical synthesis , Hydroxamic Acids/pharmacology , Benzamides/chemistry , Histone Deacetylase 6 , Histone Deacetylase Inhibitors/chemical synthesis , Humans , Substrate Specificity
11.
Clin Cancer Res ; 17(24): 7614-24, 2011 Dec 15.
Article in English | MEDLINE | ID: mdl-22016509

ABSTRACT

PURPOSE: Small-molecule inhibitors of Aurora A (AAK) and B (ABK) kinases, which play important roles in mitosis, are currently being pursued in oncology clinical trials. We developed three novel assays to quantitatively measure biomarkers of AAK inhibition in vivo. Here, we describe preclinical characterization of alisertib (MLN8237), a selective AAK inhibitor, incorporating these novel pharmacodynamic assays. EXPERIMENTAL DESIGN: We investigated the selectivity of alisertib for AAK and ABK and studied the antitumor and antiproliferative activity of alisertib in vitro and in vivo. Novel assays were used to assess chromosome alignment and mitotic spindle bipolarity in human tumor xenografts using immunofluorescent detection of DNA and alpha-tubulin, respectively. In addition, 18F-3'-fluoro-3'-deoxy-l-thymidine positron emission tomography (FLT-PET) was used to noninvasively measure effects of alisertib on in vivo tumor cell proliferation. RESULTS: Alisertib inhibited AAK over ABK with a selectivity of more than 200-fold in cells and produced a dose-dependent decrease in bipolar and aligned chromosomes in the HCT-116 xenograft model, a phenotype consistent with AAK inhibition. Alisertib inhibited proliferation of human tumor cell lines in vitro and produced tumor growth inhibition in solid tumor xenograft models and regressions in in vivo lymphoma models. In addition, a dose of alisertib that caused tumor stasis, as measured by volume, resulted in a decrease in FLT uptake, suggesting that noninvasive imaging could provide value over traditional measurements of response. CONCLUSIONS: Alisertib is a selective and potent inhibitor of AAK. The novel methods of measuring Aurora A pathway inhibition and application of tumor imaging described here may be valuable for clinical evaluation of small-molecule inhibitors.


Subject(s)
Azepines/pharmacology , Neoplasms/drug therapy , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyrimidines/pharmacology , Spindle Apparatus/drug effects , Animals , Aurora Kinase A , Aurora Kinases , Azepines/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dideoxynucleosides/pharmacokinetics , Female , Fluorine Radioisotopes , HCT116 Cells , HeLa Cells , Humans , Lymphoma/drug therapy , Lymphoma/metabolism , Lymphoma/pathology , Mice , Mice, Nude , Mice, SCID , Mitotic Index , Molecular Structure , Neoplasms/metabolism , Neoplasms/pathology , Phosphorylation/drug effects , Positron-Emission Tomography , Protein Serine-Threonine Kinases/metabolism , Pyrimidines/chemistry , Spindle Apparatus/metabolism , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
12.
Mol Cancer Res ; 8(3): 373-84, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20197380

ABSTRACT

Aurora A kinase is a serine/threonine protein kinase responsible for regulating several mitotic processes including centrosome separation, spindle assembly, and chromosome segregation. Small molecule inhibitors of Aurora A kinase are being pursued as novel anticancer agents, some of which have entered clinical trials. Despite the progress in developing these agents, terminal outcomes associated with Aurora A inhibition are not fully understood. Although evidence exists that Aurora A inhibition leads to apoptosis, other therapeutically relevant cell fates have not been reported. Here, we used the small molecule inhibitor MLN8054 to show that inhibition of Aurora A induces tumor cell senescence both in vitro and in vivo. Treatment of human tumor cells grown in culture with MLN8054 showed a number of morphologic and biochemical changes associated with senescence. These include increased staining of senescence-associated beta-galactosidase, increased nuclear and cell body size, vacuolated cellular morphology, upregulation/stabilization of p53, p21, and hypophosphorylated pRb. To determine if Aurora A inhibition induces senescence in vivo, HCT-116 xenograft-bearing animals were dosed orally with MLN8054 for 3 weeks. In the MLN8054-treated animals, increased senescence-associated beta-galactosidase activity was detected in tissue sections starting on day 15. In addition, DNA and tubulin staining of tumor tissue showed a significant increase in nuclear and cell body area, consistent with a senescent phenotype. Taken together, this data shows that senescence is a terminal outcome of Aurora A inhibition and supports the evaluation of senescence biomarkers in clinic samples.


Subject(s)
Antineoplastic Agents/pharmacology , Benzazepines/pharmacology , Cellular Senescence/drug effects , Enzyme Inhibitors/pharmacology , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/enzymology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Administration, Oral , Animals , Antineoplastic Agents/therapeutic use , Aurora Kinase A , Aurora Kinases , Benzazepines/therapeutic use , Biomarkers, Tumor/analysis , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Cell Size/drug effects , Cellular Senescence/physiology , Cyclin-Dependent Kinase Inhibitor p21/drug effects , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Drug Administration Schedule , Enzyme Inhibitors/therapeutic use , Female , Humans , Mice , Mice, Nude , Neoplasms, Experimental/physiopathology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Retinoblastoma Protein/drug effects , Retinoblastoma Protein/metabolism , Transplantation, Heterologous , Tumor Suppressor Protein p53/drug effects , Tumor Suppressor Protein p53/metabolism , beta-Galactosidase/drug effects , beta-Galactosidase/metabolism
13.
Cell Cycle ; 8(6): 876-88, 2009 Mar 15.
Article in English | MEDLINE | ID: mdl-19221504

ABSTRACT

The spindle assembly checkpoint functions during mitosis to ensure that chromosomes are properly aligned in mitotic cells prior to the onset of anaphase, thereby ensuring an equal segregation of genetic material to each daughter cell. Defects in the function of this checkpoint lead to aneuploidy, and eventually to cell death or senescence. The Aurora-related kinases, and in particular Aurora B, have been shown to play a role in regulating the spindle assembly checkpoint. In this study, we demonstrate that Aurora A activity is required for maintainance of the spindle assembly checkpoint mediated-mitotic delay induced by microtubule perturbing agents. Inhibition of Aurora A using MLN8054, a selective small-molecule inhibitor of Aurora A, in paclitaxel- or nocodazole-treated cells induces cells to become multinucleated. Using time-lapse microscopy, we demonstrate that the multinucleation phenotype arises via mitotic slippage, which is significantly accelerated upon Aurora A inhibition. Under these conditions, the spindle assembly checkpoint protein BubR1 remains localized to kinetochores prior to mitotic slippage. Moreover, we demonstrate that Aurora B remains active in these mitotic cells, indicating that the mitotic slippage induced by MLN8054 is most likely due to the inhibition of Aurora A. This finding was corroborated by demonstrating that Aurora A depletion using RNA interference in paclitaxel-treated cells also induces multinucleation. Taken together, these results suggest that Aurora A is necessary for the maintenance of the mitotic delay induced in response to microtubule-perturbing agents.


Subject(s)
Microtubules/metabolism , Mitosis , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/physiology , Spindle Apparatus/metabolism , Aurora Kinase B , Aurora Kinases , Benzazepines/pharmacology , Cell Line, Tumor , Genes, cdc/drug effects , Genes, cdc/physiology , Humans , Microtubules/drug effects , Mitosis/drug effects , Nocodazole/pharmacology , Paclitaxel/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/drug effects , Protein Serine-Threonine Kinases/genetics , RNA, Small Interfering/metabolism , Spindle Apparatus/drug effects , Spindle Apparatus/ultrastructure , Tubulin Modulators/pharmacology
14.
Proc Natl Acad Sci U S A ; 104(10): 4106-11, 2007 Mar 06.
Article in English | MEDLINE | ID: mdl-17360485

ABSTRACT

Increased Aurora A expression occurs in a variety of human cancers and induces chromosomal abnormalities during mitosis associated with tumor initiation and progression. MLN8054 is a selective small-molecule Aurora A kinase inhibitor that has entered Phase I clinical trials for advanced solid tumors. MLN8054 inhibits recombinant Aurora A kinase activity in vitro and is selective for Aurora A over the family member Aurora B in cultured cells. MLN8054 treatment results in G(2)/M accumulation and spindle defects and inhibits proliferation in multiple cultured human tumor cells lines. Growth of human tumor xenografts in nude mice was dramatically inhibited after oral administration of MLN8054 at well tolerated doses. Moreover, the tumor growth inhibition was sustained after discontinuing MLN8054 treatment. In human tumor xenografts, MLN8054 induced mitotic accumulation and apoptosis, phenotypes consistent with inhibition of Aurora A. MLN8054 is a selective inhibitor of Aurora A kinase that robustly inhibits growth of human tumor xenografts and represents an attractive modality for therapeutic intervention of human cancers.


Subject(s)
Antineoplastic Agents/pharmacology , Benzazepines/pharmacology , Enzyme Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Administration, Oral , Animals , Aurora Kinase A , Aurora Kinase B , Aurora Kinases , Cell Line, Tumor , Disease Progression , Dose-Response Relationship, Drug , Female , Humans , Inhibitory Concentration 50 , Male , Mice , Mice, Nude , Neoplasm Transplantation
15.
Proc Natl Acad Sci U S A ; 100(6): 3398-403, 2003 Mar 18.
Article in English | MEDLINE | ID: mdl-12626761

ABSTRACT

The identification of antigens associated with tumor destruction is a major goal of cancer immunology. Vaccination with irradiated tumor cells engineered to secrete granulocyte-macrophage colony stimulating factor generates potent, specific, and long-lasting antitumor immunity through improved tumor antigen presentation by dendritic cells and macrophages. A phase I clinical trial of this immunization strategy in patients with disseminated melanoma revealed the consistent induction in distant metastases of dense T and B cell infiltrates that effectuated substantial tumor necrosis and fibrosis. To delineate the target antigens of this vaccine-stimulated tumor destruction, we screened a melanoma cDNA expression library with postimmunization sera from a long-term responding patient (K030). High-titer IgG antibodies recognized melanoma inhibitor of apoptosis protein (ML-IAP), a caspase antagonist containing a single baculoviral IAP repeat and a COOH-terminal RING domain. Although K030 harbored antibodies to ML-IAP at the time of study entry, multiple courses of vaccination over 4 years increased antibody titers and elicited isotype switching. Moreover, lymphocyte infiltrates in necrotic metastases included CD4+ and CD8+ T cells specific for ML-IAP, as revealed by proliferation, tetramer, enzyme-linked immunospot, and cytotoxicity analysis. Whereas melanoma cells in densely infiltrated lesions showed strong ML-IAP expression by immunohistochemistry, lethal disease progression was associated with the loss of ML-IAP staining and the absence of lymphocyte infiltrates. These findings demonstrate that ML-IAP can serve as a target for immune-mediated tumor destruction, but that antigen-loss variants can accomplish immune escape.


Subject(s)
Adaptor Proteins, Signal Transducing , Carrier Proteins/immunology , Melanoma/immunology , Melanoma/therapy , Neoplasm Proteins/immunology , Animals , Antibodies, Neoplasm/blood , Cancer Vaccines/immunology , Cancer Vaccines/therapeutic use , Female , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Granulocyte-Macrophage Colony-Stimulating Factor/therapeutic use , Humans , Immunotherapy , In Vitro Techniques , Inhibitor of Apoptosis Proteins , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/pathology , Melanoma/pathology , Mice , Middle Aged , Necrosis , Recombinant Proteins , T-Lymphocyte Subsets/immunology
SELECTION OF CITATIONS
SEARCH DETAIL