Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Diabetologia ; 64(5): 1079-1092, 2021 05.
Article in English | MEDLINE | ID: mdl-33515070

ABSTRACT

AIMS/HYPOTHESIS: Oral administration of antigen can induce immunological tolerance. Insulin is a key autoantigen in childhood type 1 diabetes. Here, oral insulin was given as antigen-specific immunotherapy before the onset of autoimmunity in children from age 6 months to assess its safety and immune response actions on immunity and the gut microbiome. METHODS: A phase I/II randomised controlled trial was performed in a single clinical study centre in Germany. Participants were 44 islet autoantibody-negative children aged 6 months to 2.99 years who had a first-degree relative with type 1 diabetes and a susceptible HLA DR4-DQ8-containing genotype. Children were randomised 1:1 to daily oral insulin (7.5 mg with dose escalation to 67.5 mg) or placebo for 12 months using a web-based computer system. The primary outcome was immune efficacy pre-specified as induction of antibody or T cell responses to insulin and measured in a central treatment-blinded laboratory. RESULTS: Randomisation was performed in 44 children. One child in the placebo group was withdrawn after the first study visit and data from 22 insulin-treated and 21 placebo-treated children were analysed. Oral insulin was well tolerated with no changes in metabolic variables. Immune responses to insulin were observed in children who received both insulin (54.5%) and placebo (66.7%), and the trial did not demonstrate an effect on its primary outcome (p = 0.54). In exploratory analyses, there was preliminary evidence that the immune response and gut microbiome were modified by the INS genotype Among children with the type 1 diabetes-susceptible INS genotype (n = 22), antibody responses to insulin were more frequent in insulin-treated (72.7%) as compared with placebo-treated children (18.2%; p = 0.03). T cell responses to insulin were modified by treatment-independent inflammatory episodes. CONCLUSIONS/INTERPRETATION: The study demonstrated that oral insulin immunotherapy in young genetically at-risk children was safe, but was not associated with an immune response as predefined in the trial primary outcome. Exploratory analyses suggested that antibody responses to oral insulin may occur in children with a susceptible INS genotype, and that inflammatory episodes may promote the activation of insulin-responsive T cells. TRIAL REGISTRATION: Clinicaltrials.gov NCT02547519 FUNDING: The main funding source was the German Center for Diabetes Research (DZD e.V.).


Subject(s)
Diabetes Mellitus, Type 1/prevention & control , Immunotherapy/methods , Insulin/administration & dosage , Administration, Oral , Antibody Formation/drug effects , Antibody Formation/genetics , Autoantibodies/drug effects , Autoantibodies/genetics , Autoimmunity/drug effects , Child, Preschool , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/immunology , Family , Female , Germany , Humans , Infant , Insulin/immunology , Male , Primary Prevention/methods
2.
Int J Mol Sci ; 21(24)2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33348910

ABSTRACT

Shared metabolomic patterns at delivery have been suggested to underlie the mother-to-child transmission of adverse metabolic health. This study aimed to investigate whether mothers with gestational diabetes mellitus (GDM) and their offspring show similar metabolomic patterns several years postpartum. Targeted metabolomics (including 137 metabolites) was performed in plasma samples obtained during an oral glucose tolerance test from 48 mothers with GDM and their offspring at a cross-sectional study visit 8 years after delivery. Partial Pearson's correlations between the area under the curve (AUC) of maternal and offspring metabolites were calculated, yielding so-called Gaussian graphical models. Spearman's correlations were applied to investigate correlations of body mass index (BMI), Matsuda insulin sensitivity index (ISI-M), dietary intake, and physical activity between generations, and correlations of metabolite AUCs with lifestyle variables. This study revealed that BMI, ISI-M, and the AUC of six metabolites (carnitine, taurine, proline, SM(-OH) C14:1, creatinine, and PC ae C34:3) were significantly correlated between mothers and offspring several years postpartum. Intergenerational metabolite correlations were independent of shared BMI, ISI-M, age, sex, and all other metabolites. Furthermore, creatinine was correlated with physical activity in mothers. This study suggests that there is long-term metabolic programming in the offspring of mothers with GDM and informs us about targets that could be addressed by future intervention studies.


Subject(s)
Birth Weight , Diabetes, Gestational/physiopathology , Infectious Disease Transmission, Vertical , Metabolome , Obesity/pathology , Adult , Blood Glucose/analysis , Child , Cross-Sectional Studies , Female , Humans , Male , Mothers , Obesity/etiology , Obesity/metabolism , Pregnancy , Risk Factors
3.
Diabetologia ; 59(10): 2193-202, 2016 10.
Article in English | MEDLINE | ID: mdl-27423999

ABSTRACT

AIMS/HYPOTHESIS: Lactation for >3 months in women with gestational diabetes is associated with a reduced risk of type 2 diabetes that persists for up to 15 years postpartum. However, the underlying mechanisms are unknown. We examined whether in women with gestational diabetes lactation for >3 months is associated with altered metabolomic signatures postpartum. METHODS: We enrolled 197 women with gestational diabetes at a median of 3.6 years (interquartile range 0.7-6.5 years) after delivery. Targeted metabolomics profiles (including 156 metabolites) were obtained during a glucose challenge test. Comparisons of metabolite concentrations and ratios between women who lactated for >3 months and women who lactated for ≤3 months or not at all were performed using linear regression with adjustment for age and BMI at the postpartum visit, time since delivery, and maternal education level, and correction for multiple testing. Gaussian graphical modelling was used to generate metabolite networks. RESULTS: Lactation for >3 months was associated with a higher total lysophosphatidylcholine/total phosphatidylcholine ratio; in women with short-term follow-up, it was also associated with lower leucine concentrations and a lower total branched-chain amino acid concentration. Gaussian graphical modelling identified subgroups of closely linked metabolites within phosphatidylcholines and branched-chain amino acids that were affected by lactation for >3 months and have been linked to the pathophysiology of type 2 diabetes in previous studies. CONCLUSIONS/INTERPRETATION: Lactation for >3 months in women with gestational diabetes is associated with changes in the metabolomics profile that have been linked to the early pathogenesis of type 2 diabetes.


Subject(s)
Diabetes, Gestational/blood , Lactation/blood , Lactation/physiology , Postpartum Period/blood , Postpartum Period/physiology , Adult , Amino Acids, Branched-Chain/blood , Diabetes Mellitus, Type 2/blood , Female , Humans , Leucine/blood , Metabolomics/methods , Pregnancy
4.
Mol Metab ; 9: 168-175, 2018 03.
Article in English | MEDLINE | ID: mdl-29396374

ABSTRACT

OBJECTIVE: Women with insulin-requiring gestational diabetes mellitus (GDM) are at high risk of developing diabetes within a few years postpartum. We implemented this phase II study to test the hypothesis that vildagliptin, a dipeptidyl peptidase-4 inhibitor, is superior to placebo in terms of reducing the risk of postpartum diabetes. METHODS: Women with insulin-requiring GDM were randomized to either placebo or 50 mg vildagliptin twice daily for 24 months followed by a 12-month observation period (EudraCT: 2007-000634-39). Both groups received lifestyle counseling. The primary efficacy outcomes were the diagnosis of diabetes (American Diabetes Association (ADA) criteria) or impaired fasting glucose (IFG)/impaired glucose tolerance (IGT). RESULTS: Between 2008 and 2015, 113 patients (58 vildagliptin, 55 placebo) were randomized within 2.2-10.4 (median 8.6) months after delivery. At the interim analysis, nine diabetic events and 28 IFG/IGT events had occurred. Fifty-two women withdrew before completing the treatment phase. Because of the low diabetes rate, the study was terminated. Lifestyle adherence was similar in both groups. At 24 months, the cumulative probability of postpartum diabetes was 3% and 5% (hazard ratio: 1.03; 95% confidence interval: 0.15-7.36) and IFG/IGT was 43% and 22% (hazard ratio: 0.55; 95% confidence interval: 0.26-1.19) in the placebo and vildagliptin groups, respectively. Vildagliptin was well tolerated with no unexpected adverse events. CONCLUSIONS: The study did not show significant superiority of vildagliptin over placebo in terms of reducing the risk of postpartum diabetes. However, treatment was safe and suggested some improvements in glycemic control, insulin resistance, and ß-cell function. The study identified critical issues in performing clinical trials in the early postpartum period in women with GDM hampering efficacy assessments. With this knowledge, we have set a basis for which properly powered trials could be performed in women with recent GDM. TRIAL REGISTRATION NUMBER AT CLINICALTRIALS.GOV: NCT01018602.


Subject(s)
Diabetes, Gestational/drug therapy , Hypoglycemic Agents/therapeutic use , Vildagliptin/therapeutic use , Adult , Double-Blind Method , Female , Humans , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/adverse effects , Postpartum Period , Pregnancy , Vildagliptin/administration & dosage , Vildagliptin/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL