Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters

Publication year range
1.
PLoS Genet ; 18(11): e1010506, 2022 11.
Article in English | MEDLINE | ID: mdl-36441670

ABSTRACT

Short telomeres induce a DNA damage response (DDR) that evokes apoptosis and senescence in human cells. An extant question is the contribution of telomere dysfunction-induced DDR to the phenotypes observed in aging and telomere biology disorders. One candidate is RAP1, a telomere-associated protein that also controls transcription at extratelomeric regions. To distinguish these roles, we generated a knockin mouse carrying a mutated Rap1, which was incapable of binding telomeres and did not result in eroded telomeres or a DDR. Primary Rap1 knockin embryonic fibroblasts showed decreased RAP1 expression and re-localization away from telomeres, with an increased cytosolic distribution akin to that observed in human fibroblasts undergoing telomere erosion. Rap1 knockin mice were viable, but exhibited transcriptomic alterations, proinflammatory cytokine/chemokine signaling, reduced lifespan, and decreased healthspan with increased body weight/fasting blood glucose levels, spontaneous tumor incidence, and behavioral deficits. Taken together, our data present mechanisms distinct from telomere-induced DDR that underlie age-related phenotypes.


Subject(s)
Shelterin Complex , Telomere , Animals , Humans , Mice , Longevity , Phenotype , Telomere/genetics , Telomere Shortening
2.
Am J Obstet Gynecol ; 230(2): 258.e1-258.e11, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37544351

ABSTRACT

BACKGROUND: Down syndrome is associated with several comorbidities, including intellectual disability, growth restriction, and congenital heart defects. The prevalence of Down syndrome-associated comorbidities is highly variable, and intellectual disability, although fully penetrant, ranges from mild to severe. Understanding the basis of this interindividual variability might identify predictive biomarkers of in utero and postnatal outcomes that could be used as endpoints to test the efficacy of future therapeutic interventions. OBJECTIVE: The main objective of this study was to examine if antenatal interindividual variability exists in mouse models of Down syndrome and whether applying statistical approaches to clinically relevant measurements (ie, the weights of the embryo, placenta, and brain) could define cutoffs that discriminate between subgroups of trisomic embryos. STUDY DESIGN: Three commonly used mouse models of Down syndrome (Dp(16)1/Yey, Ts65Dn, and Ts1Cje) and a new model (Ts66Yah) were used in this study. Trisomic and euploid littermate embryos were used from each model with total numbers of 102 for Ts66Yah, 118 for Dp(16)1/Yey, 92 for Ts65Dn, and 126 for Ts1Cje. Placental, embryonic, and brain weights and volumes at embryonic day 18.5 were compared between genotypes in each model. K-mean clustering analysis was applied to embryonic and brain weights to identify severity classes in trisomic embryos, and brain and placental volumetric measurements were compared between genotypes and classes for each strain. In addition, Ts66Yah embryos were examined for malformations because embryonic phenotypes have never been examined in this model. RESULTS: Reduced body and brain weights were present in Ts66Yah, Dp(16)1/Yey, and Ts65Dn embyos. Cluster analysis identified 2 severity classes in trisomic embryos-mild and severe-in all 4 models that were distinguishable using a putative embryonic weight cutoff of <0.5 standard deviation below the mean. Ts66Yah trisomic embryos develop congenital anomalies that are also found in humans with Down syndrome, including congenital heart defects and renal pelvis dilation. CONCLUSION: Statistical approaches applied to clinically relevant measurements revealed 2 classes of phenotypic severity in trisomic mouse models of Down syndrome. Analysis of severely affected trisomic animals may facilitate the identification of biomarkers and endpoints that can be used to prenatally predict outcomes and the efficacy of treatments.


Subject(s)
Down Syndrome , Heart Defects, Congenital , Intellectual Disability , Animals , Mice , Female , Humans , Pregnancy , Down Syndrome/genetics , Placenta , Phenotype , Heart Defects, Congenital/genetics , Biomarkers , Disease Models, Animal , Mice, Inbred C57BL
3.
Hum Mol Genet ; 29(13): 2109-2123, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32186706

ABSTRACT

Cobalamin C (cblC) deficiency, the most common inborn error of intracellular cobalamin metabolism, is caused by mutations in MMACHC, a gene responsible for the processing and intracellular trafficking of vitamin B12. This recessive disorder is characterized by a failure to metabolize cobalamin into adenosyl- and methylcobalamin, which results in the biochemical perturbations of methylmalonic acidemia, hyperhomocysteinemia and hypomethioninemia caused by the impaired activity of the downstream enzymes, methylmalonyl-CoA mutase and methionine synthase. Cobalamin C deficiency can be accompanied by a wide spectrum of clinical manifestations, including progressive blindness, and, in mice, manifests with very early embryonic lethality. Because zebrafish harbor a full complement of cobalamin metabolic enzymes, we used genome editing to study the loss of mmachc function and to develop the first viable animal model of cblC deficiency. mmachc mutants survived the embryonic period but perished in early juvenile life. The mutants displayed the metabolic and clinical features of cblC deficiency including methylmalonic acidemia, severe growth retardation and lethality. Morphologic and metabolic parameters improved when the mutants were raised in water supplemented with small molecules used to treat patients, including hydroxocobalamin, methylcobalamin, methionine and betaine. Furthermore, mmachc mutants bred to express rod and/or cone fluorescent reporters, manifested a retinopathy and thin optic nerves (ON). Expression analysis using whole eye mRNA revealed the dysregulation of genes involved in phototransduction and cholesterol metabolism. Zebrafish with mmachc deficiency recapitulate the several of the phenotypic and biochemical features of the human disorder, including ocular pathology, and show a response to established treatments.


Subject(s)
Carrier Proteins/genetics , Morphogenesis/genetics , Vitamin B 12 Deficiency/genetics , Vitamin B 12/genetics , Zebrafish Proteins/genetics , Animals , Homocystinuria/genetics , Homocystinuria/pathology , Humans , Mice , Mutation/genetics , Optic Nerve/growth & development , Optic Nerve/pathology , Oxidoreductases/genetics , Retina/growth & development , Retina/metabolism , Vitamin B 12/analogs & derivatives , Vitamin B 12/metabolism , Vitamin B 12 Deficiency/metabolism , Vitamin B 12 Deficiency/pathology , Zebrafish/genetics , Zebrafish/growth & development
4.
Mol Genet Metab ; 137(1-2): 1-8, 2022.
Article in English | MEDLINE | ID: mdl-35868241

ABSTRACT

Methylmalonic acidemia (MMA) is a rare and severe inherited metabolic disease typically caused by mutations of the methylmalonyl-CoA mutase (MMUT) gene. Despite medical management, patients with MMA experience frequent episodes of metabolic instability, severe morbidity, and early mortality. In several preclinical studies, systemic gene therapy has demonstrated impressive improvement in biochemical and clinical phenotypes of MMA murine models. One approach uses a promoterless adeno-associated viral (AAV) vector that relies upon homologous recombination to achieve site-specific in vivo gene addition of MMUT into the last coding exon of albumin (Alb), generating a fused Alb-MMUT transcript after successful editing. We have previously demonstrated that nuclease-free AAV mediated Alb editing could effectively treat MMA mice in the neonatal period and noted that hepatocytes had a growth advantage after correction. Here, we use a transgenic knock-out mouse model of MMA that recapitulates severe clinical and biochemical symptoms to assess the benefits of Alb editing in juvenile animals. As was first noted in the neonatal gene therapy studies, we observe that gene edited hepatocytes in the MMA mice treated as juveniles exhibit a growth advantage, which allows them to repopulate the liver slowly but dramatically by 8-10 months post treatment, and subsequently manifest a biochemical and enzymatic response. In conclusion, our results suggest that the benefit of AAV mediated nuclease-free gene editing of the Alb locus to treat MMA could potentially be therapeutic for older patients.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Methylmalonyl-CoA Mutase , Mice , Animals , Methylmalonyl-CoA Mutase/genetics , Methylmalonyl-CoA Mutase/metabolism , Gene Editing , Dependovirus/genetics , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/therapy , Amino Acid Metabolism, Inborn Errors/metabolism , Mice, Knockout , Liver/metabolism , Hepatocytes/metabolism , Albumins/genetics , Albumins/metabolism , Methylmalonic Acid/metabolism
5.
Hepatology ; 73(6): 2223-2237, 2021 06.
Article in English | MEDLINE | ID: mdl-32976669

ABSTRACT

BACKGROUND AND AIMS: Adeno-associated viral (AAV) gene therapy has shown great promise as an alternative treatment for metabolic disorders managed using liver transplantation, but remains limited by transgene loss and genotoxicity. Our study aims to test an AAV vector with a promoterless integrating cassette, designed to provide sustained hepatic transgene expression and reduced toxicity in comparison to canonical AAV therapy. APPROACH AND RESULTS: Our AAV vector was designed to insert a methylmalonyl-CoA mutase (MMUT) transgene into the 3' end of the albumin locus and tested in mouse models of methylmalonic acidemia (MMA). After neonatal delivery, we longitudinally evaluated hepatic transgene expression, plasma levels of methylmalonate, and the MMA biomarker, fibroblast growth factor 21 (Fgf21), as well as integration of MMUT in the albumin locus. At necropsy, we surveyed for AAV-related hepatocellular carcinoma (HCC) in all treated MMA mice and control littermates. AAV-mediated genome editing of MMUT into the albumin locus resulted in permanent hepatic correction in MMA mouse models, which was accompanied by decreased levels of methylmalonate and Fgf21, and improved survival without HCC. With time, levels of transgene expression increased and methylmalonate progressively decreased, whereas the number of albumin-MMUT integrations and corrected hepatocytes in MMA mice increased, but not in similarly treated wild-type animals. Additionally, expression of MMUT in the setting of MMA conferred a selective growth advantage upon edited cells, which potentiates the therapeutic response. CONCLUSIONS: In conclusion, our findings demonstrate that AAV-mediated, promoterless, nuclease-free genome editing at the albumin locus provides safe and durable therapeutic benefit in neonatally treated MMA mice.


Subject(s)
Amino Acid Metabolism, Inborn Errors/therapy , Dependovirus/genetics , Gene Editing/methods , Genetic Therapy/methods , Methylmalonyl-CoA Mutase/metabolism , Amino Acid Metabolism, Inborn Errors/metabolism , Animals , Animals, Newborn , Biomarkers/blood , Carcinoma, Hepatocellular/pathology , Disease Models, Animal , Fibroblast Growth Factors/blood , Hepatocytes , Liver Neoplasms/pathology , Liver Transplantation , Malonates/blood , Methylmalonyl-CoA Mutase/genetics , Mice , Mice, Inbred C57BL
6.
Am J Obstet Gynecol ; 225(3): 296.e1-296.e13, 2021 09.
Article in English | MEDLINE | ID: mdl-33766516

ABSTRACT

BACKGROUND: In human fetuses with Down syndrome, placental pathology, structural anomalies and growth restriction are present. There is currently a significant lack of information regarding the early life span in mouse models of Down syndrome. OBJECTIVE: The objective of this study was to examine embryonic day 18.5 and placental phenotype in the 3 most common mouse models of Down syndrome (Ts65Dn, Dp(16)1/Yey, Ts1Cje). Based on prenatal and placental phenotyping in 3 mouse models of Down syndrome, we hypothesized that one or more of them would have a similar phenotype to human fetuses with trisomy 21, which would make it the most suitable for in utero treatment studies. STUDY DESIGN: Here, C57BL6J/6 female mice were mated to Dp(16)1/Yey and Ts1Cje male mice and Ts65Dn female mice to C57BL/B6Eic3Sn.BLiAF1/J male mice. At embryonic day 18.5, dams were euthanized. Embryos and placentas were examined blindly for weight and size. Embryos were characterized as euploid or trisomic, male or female by polymerase chain reaction. A subset of embryos (34 euploid and 34 trisomic) were examined for malformations. RESULTS: The Ts65Dn mouse model showed the largest differences in fetal growth, brain development, and placental development when comparing euploid and trisomic embryos. For the Dp(16)1/Yey mouse model, genotype did not impact fetal growth, but there were differences in brain and placental development. For the Ts1Cje mouse model, no significant association was found between genotype and fetal growth, brain development, or placental development. Euploid mouse embryos had no congenital anomalies; however, 1 mouse embryo died. Hepatic necrosis was seen in 6 of 12 Dp(16)1/Yey (50%) and 1 of 12 Ts1Cje (8%) mouse embryos; hepatic congestion or inflammation was observed in 3 of 10 Ts65Dn mouse embryos (30%). Renal pelvis dilation was seen in 5 of 12 Dp(16)1/Yey (42%), 5 of 10 Ts65Dn (50%), and 3 of 12 Ts1Cje (25%) mouse embryos. In addition, 1 Ts65Dn mouse embryo and 1 Dp(16)1/Yey mouse embryo had an aortic outflow abnormality. Furthermore, 2 Ts1Cje mouse embryos had ventricular septal defects. Ts65Dn mouse placentas had increased spongiotrophoblast necrosis. CONCLUSION: Fetal and placental growth showed varying trends across strains. Congenital anomalies were primarily seen in trisomic embryos. The presence of liver abnormalities in all 3 mouse models of Down syndrome (10 of 34 cases) is a novel finding. Renal pelvis dilation was also common (13 of 34 cases). Future research will examine human autopsy material to determine if these findings are relevant to infants with Down syndrome. Differences in placental histology were also observed among strains.


Subject(s)
Down Syndrome/genetics , Fetal Development , Placenta/pathology , Placentation , Animals , Brain/embryology , Brain/pathology , Dilatation, Pathologic , Disease Models, Animal , Female , Genotype , Heart Septal Defects, Ventricular/pathology , Inflammation/pathology , Kidney Pelvis/pathology , Liver/pathology , Mice, Inbred C57BL , Necrosis , Organ Size , Phenotype , Pregnancy
7.
PLoS Genet ; 14(4): e1007363, 2018 04.
Article in English | MEDLINE | ID: mdl-29698489

ABSTRACT

The hereditary spastic paraplegias (HSP) are a clinically and genetically heterogeneous group of disorders characterized by progressive lower limb spasticity. Mutations in subunits of the heterotetrameric (ε-ß4-µ4-σ4) adaptor protein 4 (AP-4) complex cause an autosomal recessive form of complicated HSP referred to as "AP-4 deficiency syndrome". In addition to lower limb spasticity, this syndrome features intellectual disability, microcephaly, seizures, thin corpus callosum and upper limb spasticity. The pathogenetic mechanism, however, remains poorly understood. Here we report the characterization of a knockout (KO) mouse for the AP4E1 gene encoding the ε subunit of AP-4. We find that AP-4 ε KO mice exhibit a range of neurological phenotypes, including hindlimb clasping, decreased motor coordination and weak grip strength. In addition, AP-4 ε KO mice display a thin corpus callosum and axonal swellings in various areas of the brain and spinal cord. Immunohistochemical analyses show that the transmembrane autophagy-related protein 9A (ATG9A) is more concentrated in the trans-Golgi network (TGN) and depleted from the peripheral cytoplasm both in skin fibroblasts from patients with mutations in the µ4 subunit of AP-4 and in various neuronal types in AP-4 ε KO mice. ATG9A mislocalization is associated with increased tendency to accumulate mutant huntingtin (HTT) aggregates in the axons of AP-4 ε KO neurons. These findings indicate that the AP-4 ε KO mouse is a suitable animal model for AP-4 deficiency syndrome, and that defective mobilization of ATG9A from the TGN and impaired autophagic degradation of protein aggregates might contribute to neuroaxonal dystrophy in this disorder.


Subject(s)
Adaptor Protein Complex 4/deficiency , Adaptor Protein Complex 4/genetics , Autophagy-Related Proteins/metabolism , Membrane Proteins/metabolism , Spastic Paraplegia, Hereditary/genetics , Spastic Paraplegia, Hereditary/metabolism , Vesicular Transport Proteins/metabolism , Adaptor Protein Complex 4/chemistry , Adaptor Protein Complex Subunits/chemistry , Adaptor Protein Complex Subunits/deficiency , Adaptor Protein Complex Subunits/genetics , Animals , Axons/metabolism , Behavior, Animal/physiology , Brain/metabolism , Brain/pathology , Disease Models, Animal , Female , Humans , Huntingtin Protein/chemistry , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation , Neurons/metabolism , Protein Aggregates/genetics , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/metabolism , Receptors, Glutamate/metabolism , Spastic Paraplegia, Hereditary/pathology , Spinal Cord/metabolism , Spinal Cord/pathology , trans-Golgi Network/metabolism
8.
Nature ; 498(7455): 506-10, 2013 Jun 27.
Article in English | MEDLINE | ID: mdl-23728300

ABSTRACT

Through their functional diversification, distinct lineages of CD4(+) T cells can act to either drive or constrain immune-mediated pathology. Transcription factors are critical in the generation of cellular diversity, and negative regulators antagonistic to alternate fates often act in conjunction with positive regulators to stabilize lineage commitment. Genetic polymorphisms within a single locus encoding the transcription factor BACH2 are associated with numerous autoimmune and allergic diseases including asthma, Crohn's disease, coeliac disease, vitiligo, multiple sclerosis and type 1 diabetes. Although these associations point to a shared mechanism underlying susceptibility to diverse immune-mediated diseases, a function for BACH2 in the maintenance of immune homeostasis has not been established. Here, by studying mice in which the Bach2 gene is disrupted, we define BACH2 as a broad regulator of immune activation that stabilizes immunoregulatory capacity while repressing the differentiation programs of multiple effector lineages in CD4(+) T cells. BACH2 was required for efficient formation of regulatory (Treg) cells and consequently for suppression of lethal inflammation in a manner that was Treg-cell-dependent. Assessment of the genome-wide function of BACH2, however, revealed that it represses genes associated with effector cell differentiation. Consequently, its absence during Treg polarization resulted in inappropriate diversion to effector lineages. In addition, BACH2 constrained full effector differentiation within TH1, TH2 and TH17 cell lineages. These findings identify BACH2 as a key regulator of CD4(+) T-cell differentiation that prevents inflammatory disease by controlling the balance between tolerance and immunity.


Subject(s)
Basic-Leucine Zipper Transcription Factors/metabolism , Homeostasis/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Autoimmunity/immunology , Basic-Leucine Zipper Transcription Factors/deficiency , Basic-Leucine Zipper Transcription Factors/genetics , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Cell Differentiation/genetics , Cell Differentiation/immunology , Female , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Homeostasis/genetics , Humans , Immune Tolerance/genetics , Immune Tolerance/immunology , Inflammation/genetics , Inflammation/immunology , Inflammation/mortality , Inflammation/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/metabolism , Transforming Growth Factor beta/pharmacology
9.
Proc Natl Acad Sci U S A ; 111(38): 13930-5, 2014 Sep 23.
Article in English | MEDLINE | ID: mdl-25201955

ABSTRACT

Novel inhibitor of histone acetyltransferase repressor (NIR) is a transcriptional corepressor with inhibitor of histone acetyltransferase activity and is a potent suppressor of p53. Although NIR deficiency in mice leads to early embryonic lethality, lymphoid-restricted deletion resulted in the absence of double-positive CD4(+)CD8(+) thymocytes, whereas bone-marrow-derived B cells were arrested at the B220(+)CD19(-) pro-B-cell stage. V(D)J recombination was preserved in NIR-deficient DN3 double-negative thymocytes, suggesting that NIR does not affect p53 function in response to physiologic DNA breaks. Nevertheless, the combined deficiency of NIR and p53 provided rescue of DN3L double-negative thymocytes and their further differentiation to double- and single-positive thymocytes, whereas B cells in the marrow further developed to the B220(+)CD19(+) pro-B-cell stage. Our results show that NIR cooperate with p53 to impose checkpoint for the generation of mature B and T lymphocytes.


Subject(s)
Cell Differentiation/immunology , Repressor Proteins/immunology , Thymocytes/immunology , Animals , Antigens, Differentiation/genetics , Antigens, Differentiation/immunology , Bone Marrow Cells/cytology , Bone Marrow Cells/immunology , Cell Differentiation/genetics , DNA Breaks , Mice , Precursor Cells, B-Lymphoid/cytology , Repressor Proteins/genetics , Thymocytes/cytology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/immunology
10.
Proc Natl Acad Sci U S A ; 110(33): 13552-7, 2013 Aug 13.
Article in English | MEDLINE | ID: mdl-23898205

ABSTRACT

Isolated methylmalonic acidemia (MMA), caused by deficiency of the mitochondrial enzyme methylmalonyl-CoA mutase (MUT), is often complicated by end stage renal disease that is resistant to conventional therapies, including liver transplantation. To establish a viable model of MMA renal disease, Mut was expressed in the liver of Mut(-/-) mice as a stable transgene under the control of an albumin (INS-Alb-Mut) promoter. Mut(-/-);Tg(INS-Alb-Mut) mice, although completely rescued from neonatal lethality that was displayed by Mut(-/-) mice, manifested a decreased glomerular filtration rate (GFR), chronic tubulointerstitial nephritis and ultrastructural changes in the proximal tubule mitochondria associated with aberrant tubular function, as demonstrated by single-nephron GFR studies. Microarray analysis of Mut(-/-);Tg(INS-Alb-Mut) kidneys identified numerous biomarkers, including lipocalin-2, which was then used to monitor the response of the GFR to antioxidant therapy in the mouse model. Renal biopsies and biomarker analysis from a large and diverse patient cohort (ClinicalTrials.gov identifier: NCT00078078) precisely replicated the findings in the animals, establishing Mut(-/-);Tg(INS-Alb-Mut) mice as a unique model of MMA renal disease. Our studies suggest proximal tubular mitochondrial dysfunction is a key pathogenic mechanism of MMA-associated kidney disease, identify lipocalin-2 as a biomarker of increased oxidative stress in the renal tubule, and demonstrate that antioxidants can attenuate the renal disease of MMA.


Subject(s)
Amino Acid Metabolism, Inborn Errors/drug therapy , Amino Acid Metabolism, Inborn Errors/enzymology , Antioxidants/pharmacology , Disease Models, Animal , Kidney Tubules, Proximal/physiopathology , Methylmalonyl-CoA Mutase/deficiency , Amino Acid Metabolism, Inborn Errors/pathology , Animals , Antioxidants/therapeutic use , Biomarkers/metabolism , Blotting, Western , DNA Primers/genetics , Enzyme-Linked Immunosorbent Assay , Fluorescein-5-isothiocyanate , Genotype , Glomerular Filtration Rate/genetics , Humans , Immunohistochemistry , Methylmalonyl-CoA Mutase/genetics , Methylmalonyl-CoA Mutase/metabolism , Mice , Mice, Knockout , Microarray Analysis , Microscopy, Electron, Transmission , Nephritis, Interstitial/genetics , Real-Time Polymerase Chain Reaction , Transgenes/genetics , Ubiquinone/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL