Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Sci Transl Med ; 10(432)2018 03 14.
Article in English | MEDLINE | ID: mdl-29540614

ABSTRACT

Anti-vascular endothelial growth factor (VEGF) therapy has failed to improve survival in patients with breast cancer (BC). Potential mechanisms of resistance to anti-VEGF therapy include the up-regulation of alternative angiogenic and proinflammatory factors. Obesity is associated with hypoxic adipose tissues, including those in the breast, resulting in increased production of some of the aforementioned factors. Hence, we hypothesized that obesity could contribute to anti-VEGF therapy's lack of efficacy. We found that BC patients with obesity harbored increased systemic concentrations of interleukin-6 (IL-6) and/or fibroblast growth factor 2 (FGF-2), and their tumor vasculature was less sensitive to anti-VEGF treatment. Mouse models revealed that obesity impairs the effects of anti-VEGF on angiogenesis, tumor growth, and metastasis. In one murine BC model, obesity was associated with increased IL-6 production from adipocytes and myeloid cells within tumors. IL-6 blockade abrogated the obesity-induced resistance to anti-VEGF therapy in primary and metastatic sites by directly affecting tumor cell proliferation, normalizing tumor vasculature, alleviating hypoxia, and reducing immunosuppression. Similarly, in a second mouse model, where obesity was associated with increased FGF-2, normalization of FGF-2 expression by metformin or specific FGF receptor inhibition decreased vessel density and restored tumor sensitivity to anti-VEGF therapy in obese mice. Collectively, our data indicate that obesity fuels BC resistance to anti-VEGF therapy via the production of inflammatory and angiogenic factors.


Subject(s)
Breast Neoplasms/drug therapy , Fibroblast Growth Factor 2/metabolism , Interleukin-6/metabolism , Obesity/complications , Vascular Endothelial Growth Factor A/metabolism , Animals , Antineoplastic Agents/therapeutic use , Enzyme-Linked Immunosorbent Assay , Female , Humans , Metformin/therapeutic use , Mice , Vascular Endothelial Growth Factor A/antagonists & inhibitors
2.
Clin Cancer Res ; 22(12): 2993-3004, 2016 06 15.
Article in English | MEDLINE | ID: mdl-26861455

ABSTRACT

PURPOSE: Obesity promotes pancreatic and breast cancer progression via mechanisms that are poorly understood. Although obesity is associated with increased systemic levels of placental growth factor (PlGF), the role of PlGF in obesity-induced tumor progression is not known. PlGF and its receptor VEGFR-1 have been shown to modulate tumor angiogenesis and promote tumor-associated macrophage (TAM) recruitment and activity. Here, we hypothesized that increased activity of PlGF/VEGFR-1 signaling mediates obesity-induced tumor progression by augmenting tumor angiogenesis and TAM recruitment/activity. EXPERIMENTAL DESIGN: We established diet-induced obese mouse models of wild-type C57BL/6, VEGFR-1 tyrosine kinase (TK)-null, or PlGF-null mice, and evaluated the role of PlGF/VEGFR-1 signaling in pancreatic and breast cancer mouse models and in human samples. RESULTS: We found that obesity increased TAM infiltration, tumor growth, and metastasis in pancreatic cancers, without affecting vessel density. Ablation of VEGFR-1 signaling prevented obesity-induced tumor progression and shifted the tumor immune environment toward an antitumor phenotype. Similar findings were observed in a breast cancer model. Obesity was associated with increased systemic PlGF, but not VEGF-A or VEGF-B, in pancreatic and breast cancer patients and in various mouse models of these cancers. Ablation of PlGF phenocopied the effects of VEGFR-1-TK deletion on tumors in obese mice. PlGF/VEGFR-1-TK deletion prevented weight gain in mice fed a high-fat diet, but exacerbated hyperinsulinemia. Addition of metformin not only normalized insulin levels but also enhanced antitumor immunity. CONCLUSIONS: Targeting PlGF/VEGFR-1 signaling reprograms the tumor immune microenvironment and inhibits obesity-induced acceleration of tumor progression. Clin Cancer Res; 22(12); 2993-3004. ©2016 AACR.


Subject(s)
Breast Neoplasms/pathology , Macrophages/metabolism , Obesity/pathology , Pancreatic Neoplasms/pathology , Placenta Growth Factor/metabolism , Vascular Endothelial Growth Factor Receptor-1/metabolism , Animals , Breast Neoplasms/immunology , Diet, High-Fat , Female , Glucose/metabolism , Humans , Hypoglycemic Agents/pharmacology , Macrophages/immunology , Metformin/pharmacology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Obese , Neovascularization, Pathologic/genetics , Obesity/immunology , Pancreatic Neoplasms/immunology , Placenta Growth Factor/genetics , Prognosis , Signal Transduction , Vascular Endothelial Growth Factor Receptor-1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL