Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Adv Exp Med Biol ; 706: 128-37, 2010.
Article in English | MEDLINE | ID: mdl-21618832

ABSTRACT

CD97 is a member of the EGF-TM7 family of adhesion G protein-coupled receptors (GPCRs) broadly expressed on leukocytes. CD97 interacts with several cellular ligands via its N-terminal epidermal growth factor (EGF)-like domains. To understand the biological function of CD97, monoclonal antibodies (mAbs) specific for individual EGF domains have been applied in a variety of in vivo models in mice, which represent different aspects of innate and adaptive immunity. Targeting CD97 by mAbs inhibited the accumulation of neutrophilic granulocytes at sites of inflammation thereby affecting antibacterial host defense, inflammatory disorders and stem cell mobilization from bone marrow. Interestingly, targeting CD97 did not impact antigen-specific (adaptive response) models such as delayed type hypersensitivity (DTH) or experimental autoimmune encephalomyelitis (EAE). However, collagen-induced arthritis (CIA), a model for rheumatoid arthritis, was significantly ameliorated suggesting therapeutic value of CD97 targeting. CD97-deficient mice are essentially normal at steady state except for a mild granulocytosis, which increases under inflammatory conditions. Comparison of the consequences of antibody treatment and gene targeting implies that CD97 mAbs actively inhibit the innate response presumably at the level of granulocyte or macrophage recruitment to sites of inflammation. Based on the collected data, we propose that the CD97 mAbs either activate CD97-mediated signal transduction via a yet unknown mechanism or act by inducing CD97 internalization, making CD97 unavailable for binding to its ligands and thereby blocking recruitment of neutrophils and possibly macrophages.


Subject(s)
Antigens, CD/immunology , Leukocytes/immunology , Animals , Antibodies/immunology , Antigens/immunology , Antigens, CD/chemistry , Disease Models, Animal , Gene Targeting , Granulocytes/metabolism , Humans , Inflammation/immunology , Leukocytes/cytology , Ligands , Protein Isoforms/chemistry , Protein Isoforms/immunology , Receptors, G-Protein-Coupled
2.
PLoS One ; 7(11): e48385, 2012.
Article in English | MEDLINE | ID: mdl-23152771

ABSTRACT

Glucocorticoids (GCs) such as prednisolone are potent immunosuppressive drugs but suffer from severe adverse effects, including the induction of insulin resistance. Therefore, development of so-called Selective Glucocorticoid Receptor Modulators (SGRM) is highly desirable. Here we describe a non-steroidal Glucocorticoid Receptor (GR)-selective compound (Org 214007-0) with a binding affinity to GR similar to that of prednisolone. Structural modelling of the GR-Org 214007-0 binding site shows disturbance of the loop between helix 11 and helix 12 of GR, confirmed by partial recruitment of the TIF2-3 peptide. Using various cell lines and primary human cells, we show here that Org 214007-0 acts as a partial GC agonist, since it repressed inflammatory genes and was less effective in induction of metabolic genes. More importantly, in vivo studies in mice indicated that Org 214007-0 retained full efficacy in acute inflammation models as well as in a chronic collagen-induced arthritis (CIA) model. Gene expression profiling of muscle tissue derived from arthritic mice showed a partial activity of Org 214007-0 at an equi-efficacious dosage of prednisolone, with an increased ratio in repression versus induction of genes. Finally, in mice Org 214007-0 did not induce elevated fasting glucose nor the shift in glucose/glycogen balance in the liver seen with an equi-efficacious dose of prednisolone. All together, our data demonstrate that Org 214007-0 is a novel SGRMs with an improved therapeutic index compared to prednisolone. This class of SGRMs can contribute to effective anti-inflammatory therapy with a lower risk for metabolic side effects.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Dibenzazepines/pharmacology , Receptors, Glucocorticoid/agonists , Thiadiazoles/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Arthritis, Experimental/drug therapy , Arthritis, Experimental/genetics , Blood Glucose , Dibenzazepines/therapeutic use , Female , Gene Expression Regulation/drug effects , Humans , Kinetics , Liver/drug effects , Liver/enzymology , Male , Mice , Molecular Docking Simulation , Prednisolone/pharmacology , Prednisolone/therapeutic use , Protein Binding , Receptors, Glucocorticoid/chemistry , Receptors, Glucocorticoid/metabolism , Thiadiazoles/therapeutic use
3.
Arthritis Res Ther ; 12(3): R101, 2010.
Article in English | MEDLINE | ID: mdl-20497523

ABSTRACT

INTRODUCTION: The immune modulatory role of estrogens in inflammation is complex. Both pro- and anti-inflammatory effects of estrogens have been described. Estrogens bind both estrogen receptor (ER)alpha and beta. The contribution of ERalpha and ERbeta to ER-mediated immune modulation was studied in delayed type hypersensitivity (DTH) and in experimental arthritis METHODS: ER-mediated suppression of rat adjuvant arthritis (AA) was studied using ethinyl-estradiol (EE) and a selective ERbeta agonist (ERB-79). Arthritis was followed for 2 weeks. Next, effects of ER agonists (ethinyl-estradiol, an ERalpha selective agonist (ERA-63) and a selective ERbeta agonist (ERB-79) on the development of a tetanus toxoid (TT)-specific delayed type hypersensitivity response in wild type (WT) and in ERalpha- or ERbeta-deficient mice were investigated. Finally, EE and ERA-63 were tested for their immune modulating potential in established collagen induced arthritis in DBA/1J mice. Arthritis was followed for three weeks. Joint pathology was examined by histology and radiology. Local synovial cytokine production was analyzed using Luminex technology. Sera were assessed for COMP as a biomarker of cartilage destruction. RESULTS: EE was found to suppress clinical signs and symptoms in rat AA. The selective ERbeta agonist ERB-79 had no effect on arthritis symptoms in this model. In the TT-specific DTH model, EE and the selective ERalpha agonist ERA-63 suppressed the TT-specific swelling response in WT and ERbetaKO mice but not in ERalphaKO mice. As seen in the AA model, the selective ERbeta agonist ERB-79 did not suppress inflammation. Treatment with EE or ERA-63 suppressed clinical signs in collagen induced arthritis (CIA) in WT mice. This was associated with reduced inflammatory infiltrates and decreased levels of proinflammatory cytokines in CIA joints. CONCLUSIONS: ERalpha, but not ERbeta, is key in ER-mediated suppression of experimental arthritis. It remains to be investigated how these findings translate to human autoimmune disease.


Subject(s)
Arthritis, Experimental/metabolism , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/metabolism , Inflammation/metabolism , Animals , Arthritis, Experimental/drug therapy , Cytokines/metabolism , Disease Models, Animal , Estrogen Receptor alpha/agonists , Estrogen Receptor alpha/genetics , Estrogen Receptor beta/agonists , Estrogen Receptor beta/genetics , Ethinyl Estradiol/analogs & derivatives , Ethinyl Estradiol/therapeutic use , Female , Hypersensitivity, Delayed/chemically induced , Hypersensitivity, Delayed/drug therapy , Male , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Knockout , Rats , Synovial Membrane/metabolism , Tetanus Toxoid/adverse effects
4.
J Pharmacol Exp Ther ; 305(3): 1212-21, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12626656

ABSTRACT

The diverse physiological functions of histamine are mediated through distinct histamine receptors. Mast cells are major producers of histamine, yet effects of histamine on mast cells are currently unclear. The present study shows that histamine induces chemotaxis of mouse mast cells, without affecting mast cell degranulation. Mast cell chemotaxis toward histamine could be blocked by the dual H3/H4 receptor antagonist thioperamide, but not by H1 or H2 receptor antagonists. This chemotactic response is mediated by the H4 receptor, because chemotaxis toward histamine was absent in mast cells derived from H4 receptor-deficient mice but was detected in H3 receptor-deficient mast cells. In addition, Northern blot analysis showed the expression of H4 but not H3 receptors on mast cells. Activation of H4 receptors by histamine resulted in calcium mobilization from intracellular calcium stores. Both G alpha i/o proteins and phospholipase C (PLC) are involved in histamine-induced calcium mobilization and chemotaxis in mast cells, because these responses were completely inhibited by pertussis toxin and PLC inhibitor 1-[6-[[17 beta-3-methoxyestra-1,3,5 (10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U73122). In summary, histamine was shown to mediate signaling and chemotaxis of mast cells via the H4 receptor. This mechanism might be responsible for mast cell accumulation in allergic tissues.


Subject(s)
Calcium/metabolism , Mast Cells/metabolism , Receptors, G-Protein-Coupled , Receptors, Histamine/metabolism , Animals , Basophils/metabolism , Cells, Cultured , Chemotaxis , Eosinophils/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Histamine/metabolism , Humans , Mice , Mice, Knockout , Receptors, Histamine H4 , Type C Phospholipases/metabolism
5.
J Pharmacol Exp Ther ; 309(1): 404-13, 2004 Apr.
Article in English | MEDLINE | ID: mdl-14722321

ABSTRACT

Histamine mediates its physiological function through binding to four known histamine receptors. Here, we describe the first selective antagonist of the histamine H4 receptor, the newest member of the histamine receptor family, and provide evidence that such antagonists have anti-inflammatory activity in vivo. 1-[(5-chloro-1H-indol-2-yl)carbonyl]-4-methylpiperazine (JNJ 7777120) has a K(i) of 4.5 nM versus the human receptor and a pA(2) of 8.1. It is equipotent against the human, mouse, and rat receptors. It exhibits at least 1000-fold selectivity over H1, H2, or H3 receptors and has no cross-reactivity against 50 other targets. This compound has an oral bioavailability of approximately 30% in rats and 100% in dogs, with a half-life of approximately 3 h in both species. JNJ 7777120 blocks histamine-induced chemotaxis and calcium influx in mouse bone marrow-derived mast cells. In addition, it can block the histamine-induced migration of tracheal mast cells from the connective tissue toward the epithelium in mice. JNJ 7777120 significantly blocks neutrophil infiltration in a mouse zymosan-induced peritonitis model. This model is reported to be mast cell-dependent, which suggests that the compound effect may be mediated by mast cells. These results indicate that the histamine H4 receptor plays a role in the inflammatory process. Selective H4 receptor antagonists like JNJ 7777120 may have the potential to be useful in treating inflammation in humans.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Histamine Antagonists/therapeutic use , Indoles/therapeutic use , Pain/drug therapy , Piperazines/therapeutic use , Receptors, G-Protein-Coupled , Receptors, Histamine/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Cell Movement/drug effects , Cells, Cultured , Disease Models, Animal , Female , Histamine Antagonists/pharmacology , Humans , Indoles/pharmacology , Inflammation/drug therapy , Male , Mast Cells/cytology , Mast Cells/drug effects , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Pain/chemically induced , Piperazines/pharmacology , Rats , Receptors, Histamine/drug effects , Receptors, Histamine H4
SELECTION OF CITATIONS
SEARCH DETAIL