Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nucleic Acids Res ; 47(18): 9741-9760, 2019 10 10.
Article in English | MEDLINE | ID: mdl-31504770

ABSTRACT

Extrachromosomal circular DNA (eccDNA) is both a driver of eukaryotic genome instability and a product of programmed genome rearrangements, but its extent had not been surveyed in Oxytricha, a ciliate with elaborate DNA elimination and translocation during development. Here, we captured rearrangement-specific circular DNA molecules across the genome to gain insight into its processes of programmed genome rearrangement. We recovered thousands of circularly excised Tc1/mariner-type transposable elements and high confidence non-repetitive germline-limited loci. We verified their bona fide circular topology using circular DNA deep-sequencing, 2D gel electrophoresis and inverse polymerase chain reaction. In contrast to the precise circular excision of transposable elements, we report widespread heterogeneity in the circular excision of non-repetitive germline-limited loci. We also demonstrate that circular DNAs are transcribed in Oxytricha, producing rearrangement-specific long non-coding RNAs. The programmed formation of thousands of eccDNA molecules makes Oxytricha a model system for studying nucleic acid topology. It also suggests involvement of eccDNA in programmed genome rearrangement.


Subject(s)
DNA, Circular/genetics , Gene Rearrangement/genetics , Oxytricha/genetics , Recombination, Genetic , Cytoplasm/genetics , DNA Transposable Elements/genetics , DNA, Protozoan/genetics , Eukaryotic Cells , Genome, Protozoan/genetics , High-Throughput Nucleotide Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL