Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Arterioscler Thromb Vasc Biol ; 36(6): 1164-73, 2016 06.
Article in English | MEDLINE | ID: mdl-27079884

ABSTRACT

OBJECTIVE: Thiol isomerases facilitate protein folding in the endoplasmic reticulum, and several of these enzymes, including protein disulfide isomerase and ERp57, are mobilized to the surface of activated platelets, where they influence platelet aggregation, blood coagulation, and thrombus formation. In this study, we examined the synthesis and trafficking of thiol isomerases in megakaryocytes, determined their subcellular localization in platelets, and identified the cellular events responsible for their movement to the platelet surface on activation. APPROACH AND RESULTS: Immunofluorescence microscopy imaging was used to localize protein disulfide isomerase and ERp57 in murine and human megakaryocytes at various developmental stages. Immunofluorescence microscopy and subcellular fractionation analysis were used to localize these proteins in platelets to a compartment distinct from known secretory vesicles that overlaps with an inner cell-surface membrane region defined by the endoplasmic/sarcoplasmic reticulum proteins calnexin and sarco/endoplasmic reticulum calcium ATPase 3. Immunofluorescence microscopy and flow cytometry were used to monitor thiol isomerase mobilization in activated platelets in the presence and absence of actin polymerization (inhibited by latrunculin) and in the presence or absence of membrane fusion mediated by Munc13-4 (absent in platelets from Unc13d(Jinx) mice). CONCLUSIONS: Platelet-borne thiol isomerases are trafficked independently of secretory granule contents in megakaryocytes and become concentrated in a subcellular compartment near the inner surface of the platelet outer membrane corresponding to the sarco/endoplasmic reticulum of these cells. Thiol isomerases are mobilized to the surface of activated platelets via a process that requires actin polymerization but not soluble N-ethylmaleimide-sensitive fusion protein attachment receptor/Munc13-4-dependent vesicular-plasma membrane fusion.


Subject(s)
Blood Platelets/enzymology , Cell Membrane/enzymology , Megakaryocytes/enzymology , Platelet Activation , Protein Disulfide-Isomerases/blood , Actins/blood , Animals , Blood Platelets/drug effects , Blood Proteins/deficiency , Blood Proteins/genetics , Calnexin/blood , Cell Membrane/drug effects , Genotype , Humans , Megakaryocytes/drug effects , Membrane Fusion , Membrane Proteins/blood , Membrane Proteins/deficiency , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Platelet Activation/drug effects , Protein Disulfide-Isomerases/biosynthesis , Protein Transport , Sarcoplasmic Reticulum Calcium-Transporting ATPases/blood
2.
TH Open ; 3(3): e244-e258, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31367693

ABSTRACT

Quercetin, a dietary flavonoid, has been reported to possess antiplatelet activity. However, its extensive metabolism following ingestion has resulted in difficulty elucidating precise mechanisms of action. In this study, we aimed to characterize the antiplatelet mechanisms of two methylated metabolites of quercetin-isorhamnetin and tamarixetin-and explore potential interactions with aspirin. Isorhamnetin and tamarixetin inhibited human platelet aggregation, and suppressed activatory processes including granule secretion, integrin αIIbß3 function, calcium mobilization, and spleen tyrosine kinase (Syk)/linker for activation of T cells (LAT) phosphorylation downstream of glycoprotein VI with similar potency to quercetin. All three flavonoids attenuated thrombus formation in an in vitro microfluidic model, and isoquercetin, a 3-O-glucoside of quercetin, inhibited thrombosis in a murine laser injury model. Isorhamnetin, tamarixetin, and quercetin enhanced the antiplatelet effects of aspirin more-than-additively in a plate-based aggregometry assay, reducing aspirin IC 50 values by an order of magnitude, with this synergy maintained in a whole blood test of platelet function. Our data provide mechanistic evidence for the antiplatelet activity of two quercetin metabolites, isorhamnetin and tamarixetin, and suggest a potential antithrombotic role for these flavonoids. In combination with their interactions with aspirin, this may represent a novel avenue of investigation for the development of new antithrombotic strategies and management of current therapies.

3.
Trends Cardiovasc Med ; 28(7): 429-434, 2018 10.
Article in English | MEDLINE | ID: mdl-29661712

ABSTRACT

Oxidative stress represents an imbalance between the production of reactive oxygen species (ROS) and the cellular antioxidant system. Increased levels of oxidative stress contribute to the development of atherosclerosis that eventually leads to thrombosis; a principle cause of heart attacks and strokes. Thrombosis is a consequence of platelet activation and aggregate formation within the circulation. Platelet ROS are mostly generated by reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. NOX2 is an isoform from NADPH oxidase expressed in platelets and an important regulator of platelet activation-associated thrombosis. The present article aims to highlight the relative contribution of NOX2 as a key target of different platelet activation pathways and antiplatelet treatment.


Subject(s)
Blood Coagulation , Blood Platelets/enzymology , NADPH Oxidase 2/blood , Oxidative Stress , Platelet Activation , Reactive Oxygen Species/blood , Thrombosis/enzymology , Animals , Antioxidants/therapeutic use , Blood Platelets/drug effects , Enzyme Inhibitors/therapeutic use , Humans , NADPH Oxidase 2/antagonists & inhibitors , Oxidative Stress/drug effects , Platelet Activation/drug effects , Platelet Aggregation Inhibitors/therapeutic use , Signal Transduction/drug effects , Thrombosis/blood , Thrombosis/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL