Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Anal Bioanal Chem ; 413(6): 1675-1687, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33523257

ABSTRACT

A workflow was developed and implemented in a software tool for the automated combination of spatially resolved laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) data and data on the morphology of the biological tissue. Making use of a recently published biological annotation software, FishImager automatically assigns the biological feature as regions of interest (ROIs) and overlays them with the quantitative LA-ICP-MS data. Furthermore, statistical tools including cluster algorithms can be applied to the elemental intensity data and directly compared with the ROIs. This is effectively visualized in heatmaps. This allows gaining statistical significance on distribution and co-localization patterns. Finally, the biological functions of the assigned ROIs can then be easily linked with elemental distributions. We demonstrate the versatility of FishImager with quantitative LA-ICP-MS data of the zebrafish embryo tissue. The distribution of natural elements and xenobiotics is analyzed and discussed. With the help of FishImager, it was possible to identify compartments affected by toxicity effects or biological mechanisms to eliminate the xenobiotic. The presented workflow can be used for clinical and ecotoxicological testing, for example. Ultimately, it is a tool to simplify and reproduce interpretations of imaging LA-ICP-MS data in many applications.


Subject(s)
Laser Therapy/methods , Mass Spectrometry/methods , Zebrafish/embryology , Algorithms , Animals , Cluster Analysis , Computer Graphics , Embryo, Nonmammalian , Hydrogen-Ion Concentration , Image Processing, Computer-Assisted , Limit of Detection , Pattern Recognition, Automated , Reproducibility of Results , Software , Xenobiotics/analysis
2.
Anal Bioanal Chem ; 412(22): 5261-5271, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32542454

ABSTRACT

Analytical techniques are in high demand for the determination of organic capping agents on surfaces of metallic nanoparticles (NPs) such as gold (Au) and silver (Ag). In this study, the potential of laser desorption ionisation time-of-flight mass spectrometry (LDI-ToF-MS) as a technique fit for this purpose is demonstrated. First, a collection of reference spectra of most commonly used organic capping agents, including small molecules and polymers was established. Second, the robustness of the method was tested towards parameters like NP core material and NP size. In a third step, the quantitative capabilities of LDI-ToF-MS were determined. Finally, the potential to detect chemical alterations of the organic capping agent was evaluated. LDI-ToF-MS is able to detect capping agents ranging from small molecules (citric acid, tannic acid, lipoic acid) to large polymers (polyvinylpyrrolidone, branched polyethylenimine and methoxy polyethylene glycol sulfhydryl) on Au and Ag NPs based on characteristic signals for each capping agent. Small molecules showed characteristic fragment ions with low intensities, whereas polymers showed intense signals of the monomeric subunit. The NP concentration range comprises about two orders of magnitude with lowest detection limits of 5 mg/L or a capping agent concentration in the lower nM range. Changes in capping agent composition are detectable at NP concentrations in the g/L range. Thus, LDI-ToF-MS is particularly suitable for characterisation of polymer-capped NPs with high NP concentrations. This may be the case for quality control as part of the material synthesis and testing. Graphical abstract.

3.
Nanoscale ; 15(26): 11268-11279, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37345980

ABSTRACT

This study describes an interlaboratory comparison (ILC) among nine (9) laboratories to evaluate and validate the standard operation procedure (SOP) for single-particle (sp) ICP-TOFMS developed within the context of the Horizon 2020 project ACEnano. The ILC was based on the characterization of two different Pt nanoparticle (NP) suspensions in terms of particle mass, particle number concentration, and isotopic composition. The two Pt NP suspensions were measured using icpTOF instruments (TOFWERK AG, Switzerland). Two Pt NP samples were characterized and mass equivalent spherical sizes (MESSs) of 40.4 ± 7 nm and 58.8 ± 8 nm were obtained, respectively. MESSs showed <16% relative standard deviation (RSD) among all participating labs and <4% RSD after exclusion of the two outliers. A good agreement was achieved between the different participating laboratories regarding particle mass, but the particle number concentration results were more scattered, with <53% RSD among all laboratories, which is consistent with results from previous ILC studies conducted using ICP-MS instrumentation equipped with a sequential mass spectrometer. Additionally, the capabilities of sp-ICP-TOFMS to determine masses on a particle basis are discussed with respect to the potential for particle density determination. Finally, because quasi-simultaneous multi-isotope and multi-element determinations are a strength of ICP-TOFMS instrumentation, the precision and trueness of isotope ratio determinations were assessed. The average of 1000 measured particles yielded a precision of below ±1% for intensity ratios of the most abundant Pt isotopes, i.e.194Pt and 195Pt, while the accuracy of isotope ratios with the lower abundant isotopes was limited by counting statistics.

4.
J Vis Exp ; (176)2021 10 25.
Article in English | MEDLINE | ID: mdl-34747394

ABSTRACT

The physicochemical characterization of nanomaterials (NMs) is often an analytical challenge, due to their small size (at least one dimension in the nanoscale, i.e. 1-100 nm), dynamic nature, and diverse properties. At the same time, reliable and repeatable characterization is paramount to ensure safety and quality in the manufacturing of NM-bearing products. There are several methods available to monitor and achieve reliable measurement of nanoscale-related properties, one example of which is Ultraviolet-Visible Spectroscopy (UV-Vis). This is a well-established, simple, and inexpensive technique that provides non-invasive and fast real-time screening evaluation of NM size, concentration, and aggregation state. Such features make UV-Vis an ideal methodology to assess the proficiency testing schemes (PTS) of a validated standard operating procedure (SOP) intended to evaluate the performance and reproducibility of a characterization method. In this paper, the PTS of six partner laboratories from the H2020 project ACEnano were assessed through an interlaboratory comparison (ILC). Standard gold (Au) colloid suspensions of different sizes (ranging 5-100 nm) were characterized by UV-Vis at the different institutions to develop an implementable and robust protocol for NM size characterization.


Subject(s)
Gold , Nanostructures , Gold/chemistry , Nanostructures/chemistry , Reproducibility of Results , Spectrophotometry, Ultraviolet/methods , Water/chemistry
5.
Biointerphases ; 15(2): 021005, 2020 03 25.
Article in English | MEDLINE | ID: mdl-32212739

ABSTRACT

Nowadays, high-resolution imaging techniques are extensively applied in a complementary way to gain insights into complex phenomena. For a truly complementary analytical approach, a common sample carrier is required that is suitable for the different preparation methods necessary for each analytical technique. This sample carrier should be capable of accommodating diverse analytes and maintaining their pristine composition and arrangement during deposition and preparation. In this work, a new type of sample carrier consisting of a silicon wafer with a hydrophilic polymer coating was developed. The robustness of the polymer coating toward solvents was strengthened by cross-linking and stoving. Furthermore, a new method of UV-ozone cleaning was developed that enhances the adhesion of the polymer coating to the wafer and ensures reproducible surface-properties of the resulting sample carrier. The hydrophilicity of the sample carrier was recovered applying the new method of UV-ozone cleaning, while avoiding UV-induced damages to the polymer. Noncontact 3D optical profilometry and contact angle measurements were used to monitor the hydrophilicity of the coating. The hydrophilicity of the polymer coating ensures its spongelike behavior so that upon the deposition of an analyte suspension, the solvent and solutes are separated from the analyte by absorption into the polymer. This feature is essential to limit the coffee-ring effect and preserve the native identity of an analyte upon deposition. The suitability of the sample carrier for various sample types was tested using nanoparticles from suspension, bacterial cells, and tissue sections. To assess the homogeneity of the analyte distribution and preservation of sample integrity, optical and scanning electron microscopy, helium ion microscopy, laser ablation inductively coupled plasma mass spectrometry, and time-of-flight secondary ion mass spectrometry were used. This demonstrates the broad applicability of the newly developed sample carrier and its value for complementary imaging.


Subject(s)
Imaging, Three-Dimensional , Animals , Hydrophobic and Hydrophilic Interactions , Nanoparticles/ultrastructure , Polymers/chemistry , Pseudomonas putida/ultrastructure , Rabbits , Skin/ultrastructure , Surface Properties , Temperature , Water/chemistry , Zea mays/anatomy & histology
6.
Clinicoecon Outcomes Res ; 8: 113-26, 2016.
Article in English | MEDLINE | ID: mdl-27217785

ABSTRACT

PURPOSE: Neuropathic pain (NP) is often severe and represents a major humanistic and economic burden. This study aimed at providing insight on this burden across France, Germany, Italy, Spain, and the UK, considering direct and indirect costs, productivity loss, and humanistic impact on patients and their families. METHODS: Physician questionnaires provided data on patients presenting with NP covering demographics, sick leave and retirement, number of consultations, drug treatments, and surgical procedures. Patients provided further demographic and disease-related data and completed the Work Productivity and Activity Impairment (WPAI), the EuroQol 5-Dimension (EQ-5D), and the Brief Pain Inventory (BPI) questionnaires. All health-related direct unitary costs were collected from relevant country-specific sources and adjusted to 2012 prices (€) where necessary. A subgroup analysis of costs based on diabetic peripheral neuropathy (n=894), fibromyalgia (n=300), and low back pain (n=963) was performed. FINDINGS: About 413 physicians completed a total of 3,956 patient records forms. Total annual direct health-care costs per patient ranged from €1,939 (Italy) to €3,131 (Spain). Annual professional caregiver costs ranged from €393 (France) to €1,242 (UK), but this only represented a small proportion of total care because much care is provided by family or friends. Sick leave costs ranged from €5,492 (UK) to €7,098 (France), with 10%-32% patients prevented from working at some point by NP. Total cost (including direct and indirect costs) of NP per patient was €10,313 in France (69% of the total cost), €14,446 in Germany (78%), €9,305 in Italy (69%), €10,597 in Spain (67%), and €9,685 in the UK (57%). Indirect costs (ie, sick leave) constituted the majority of costs in all five countries: €7,098 in France, €11,232 in Germany, €6,382 in Italy, €7,066 in Spain, and €5,492 in the UK. In the subgroup analysis, total annual direct costs per patient were highest for neuropathic back pain and radiculopathy, and lowest for fibromyalgia. Mean WPAI score range was 34.4-56.1; BPI interference was 4.1-4.8; and EQ-5D was 0.57-0.74. The results suggest that a significant proportion of the patient's work time in the previous week was affected by NP, and these are relatively high compared with other diseases such as diabetes, respiratory conditions, and arthritis. IMPLICATIONS: Despite differences in practice between countries, these findings suggest a high opportunity cost for society in terms of lost work and productivity due to NP. The wider costs appear significantly higher to patients, carers/families, and society as a whole than to the health system alone.

SELECTION OF CITATIONS
SEARCH DETAIL