Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Development ; 150(20)2023 10 15.
Article in English | MEDLINE | ID: mdl-37823343

ABSTRACT

The amino acid L-proline exhibits growth factor-like properties during development - from improving blastocyst development to driving neurogenesis in vitro. Addition of 400 µM L-proline to self-renewal medium drives naïve mouse embryonic stem cells (ESCs) to early primitive ectoderm-like (EPL) cells - a transcriptionally distinct primed or partially primed pluripotent state. EPL cells retain expression of pluripotency genes, upregulate primitive ectoderm markers, undergo a morphological change and have increased cell number. These changes are facilitated by a complex signalling network hinging on the Mapk, Fgfr, Pi3k and mTor pathways. Here, we use a factorial experimental design coupled with statistical modelling to understand which signalling pathways are involved in the transition between ESCs and EPL cells, and how they underpin changes in morphology, cell number, apoptosis, proliferation and gene expression. This approach reveals pathways which work antagonistically or synergistically. Most properties were affected by more than one inhibitor, and each inhibitor blocked specific aspects of the naïve-to-primed transition. These mechanisms underpin progression of stem cells across the in vitro pluripotency continuum and serve as a model for pre-, peri- and post-implantation embryogenesis.


Subject(s)
Ectoderm , Mouse Embryonic Stem Cells , Animals , Mice , Ectoderm/metabolism , Proline/metabolism , Signal Transduction , Embryonic Stem Cells , Cell Differentiation/genetics
2.
EMBO J ; 39(19): e104063, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32790115

ABSTRACT

The tumour stroma regulates nearly all stages of carcinogenesis. Stromal heterogeneity in human triple-negative breast cancers (TNBCs) remains poorly understood, limiting the development of stromal-targeted therapies. Single-cell RNA sequencing of five TNBCs revealed two cancer-associated fibroblast (CAF) and two perivascular-like (PVL) subpopulations. CAFs clustered into two states: the first with features of myofibroblasts and the second characterised by high expression of growth factors and immunomodulatory molecules. PVL cells clustered into two states consistent with a differentiated and immature phenotype. We showed that these stromal states have distinct morphologies, spatial relationships and functional properties in regulating the extracellular matrix. Using cell signalling predictions, we provide evidence that stromal-immune crosstalk acts via a diverse array of immunoregulatory molecules. Importantly, the investigation of gene signatures from inflammatory-CAFs and differentiated-PVL cells in independent TNBC patient cohorts revealed strong associations with cytotoxic T-cell dysfunction and exclusion, respectively. Such insights present promising candidates to further investigate for new therapeutic strategies in the treatment of TNBCs.


Subject(s)
Triple Negative Breast Neoplasms/immunology , Tumor Escape , Extracellular Matrix/immunology , Extracellular Matrix/pathology , Female , Humans , RNA-Seq , Stromal Cells/immunology , Stromal Cells/pathology , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/pathology , Triple Negative Breast Neoplasms/pathology
3.
Mol Ther ; 30(3): 1119-1134, 2022 03 02.
Article in English | MEDLINE | ID: mdl-34998954

ABSTRACT

Neuroblastoma is a deadly childhood cancer arising in the developing sympathetic nervous system. High-risk patients are currently treated with intensive chemotherapy, which is curative in only 50% of children and leaves some surviving patients with life-long side effects. microRNAs (miRNAs) are critical regulators of neural crest development and are deregulated during neuroblastoma tumorigenesis, making miRNA-based drugs an attractive therapeutic avenue. A functional screen of >1,200 miRNA mimics was conducted in neuroblastoma cell lines to discover miRNAs that sensitized cells to low doses (30% inhibitory concentration [IC30]) of doxorubicin and vincristine chemotherapy used in the treatment of the disease. Three miRNAs, miR-99b-5p, miR-380-3p, and miR-485-3p, had potent chemosensitizing activity with doxorubicin in multiple models of high-risk neuroblastoma. These miRNAs underwent genomic loss in a subset of neuroblastoma patients, and low expression predicted poor survival outcome. In vitro functional assays revealed each of these miRNAs enhanced the anti-proliferative and pro-apoptotic effects of doxorubicin. We used RNA sequencing (RNA-seq) to show that miR-99b-5p represses neuroblastoma dependency genes LIN28B and PHOX2B both in vitro and in patient-derived xenograft (PDX) tumors. Luciferase reporter assays demonstrate that PHOX2B is a direct target of miR-99b-5p. We anticipate that restoring the function of the tumor-suppressive miRNAs discovered here may be a valuable therapeutic strategy for the treatment of neuroblastoma patients.


Subject(s)
MicroRNAs , Neuroblastoma , Child , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Gene Expression Regulation, Neoplastic , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Neuroblastoma/drug therapy , Neuroblastoma/genetics
4.
Lab Invest ; 101(1): 26-37, 2021 01.
Article in English | MEDLINE | ID: mdl-32873880

ABSTRACT

Most NUTM1-rearranged neoplasms (NRNs) have fusions between NUTM1 and BRD (bromodomain-containing) family members and are termed NUT carcinomas (NCs) because they show some squamous differentiation. However, some NRNs are associated with fusions between NUTM1 and members of the MAD (MAX dimerization) gene family of MYC antagonists. Here we describe a small round cell malignancy from the gastro-esophageal junction with a previously unreported fusion between NUTM1 and the MAD family member MXI1. In contrast to NCs, the MXI1-NUTM1 tumor did not show squamous differentiation and did not express MYC, TP63 or SOX2, genes known to be targets of BRD-NUTM1 proteins and critical for NC oncogenesis. Transcriptome analysis showed paradoxical enrichment of MYC target genes in the MXI1-NUTM1 tumor despite the lack of MYC expression. When expressed in vitro MXI1-NUTM1 partially phenocopied MYC, enhancing cell proliferation and cooperating with oncogenic HRAS to produce anchorage-independent cell growth. These data provide evidence that MAD family members, which are normally repressors of MYC activity, can be converted into MYC-like mimics by fusion to NUTM1. The pathological features and novel oncogenic mechanism of the MXI1-NUTM1 tumor show that identification of NUTM1 fusion partners can be important for accurate diagnostic classification of some NRN subtypes, and potentially may guide therapeutic options.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Esophageal Neoplasms/genetics , Esophagogastric Junction/pathology , Neoplasm Proteins/genetics , Nuclear Proteins/genetics , Stomach Neoplasms/genetics , Tumor Suppressor Proteins/genetics , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/pathology , Fatal Outcome , Female , Humans , Middle Aged , Oncogene Proteins, Fusion , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Transcriptome
5.
Breast Cancer Res ; 22(1): 63, 2020 06 11.
Article in English | MEDLINE | ID: mdl-32527287

ABSTRACT

BACKGROUND: Basal-like breast cancer (BLBC) is a poorly characterised, heterogeneous disease. Patients are diagnosed with aggressive, high-grade tumours and often relapse with chemotherapy resistance. Detailed understanding of the molecular underpinnings of this disease is essential to the development of personalised therapeutic strategies. Inhibitor of differentiation 4 (ID4) is a helix-loop-helix transcriptional regulator required for mammary gland development. ID4 is overexpressed in a subset of BLBC patients, associating with a stem-like poor prognosis phenotype, and is necessary for the growth of cell line models of BLBC through unknown mechanisms. METHODS: Here, we have defined unique molecular insights into the function of ID4 in BLBC and the related disease high-grade serous ovarian cancer (HGSOC), by combining RIME proteomic analysis, ChIP-seq mapping of genomic binding sites and RNA-seq. RESULTS: These studies reveal novel interactions with DNA damage response proteins, in particular, mediator of DNA damage checkpoint protein 1 (MDC1). Through MDC1, ID4 interacts with other DNA repair proteins (γH2AX and BRCA1) at fragile chromatin sites. ID4 does not affect transcription at these sites, instead binding to chromatin following DNA damage. Analysis of clinical samples demonstrates that ID4 is amplified and overexpressed at a higher frequency in BRCA1-mutant BLBC compared with sporadic BLBC, providing genetic evidence for an interaction between ID4 and DNA damage repair deficiency. CONCLUSIONS: These data link the interactions of ID4 with MDC1 to DNA damage repair in the aetiology of BLBC and HGSOC.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Carcinoma, Basal Cell/genetics , Carcinoma, Basal Cell/metabolism , Inhibitor of Differentiation Proteins/genetics , Inhibitor of Differentiation Proteins/metabolism , Animals , Apoptosis/physiology , Breast Neoplasms/pathology , Carcinoma, Basal Cell/pathology , Cell Differentiation/physiology , Cell Line, Tumor , Cell Proliferation/physiology , Chromatin/genetics , Chromatin/metabolism , DNA Damage , Female , Heterografts , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Prognosis , Proteogenomics , Tumor Cells, Cultured
7.
Breast Cancer Res ; 20(1): 100, 2018 09 03.
Article in English | MEDLINE | ID: mdl-30176939

ABSTRACT

Differentiation of stem cells into highly specialised cells requires gene expression changes brought about by remodelling of the chromatin architecture. During this lineage-commitment process, the majority of DNA needs to be packaged into inactive heterochromatin, allowing only a subset of regulatory elements to remain open and functionally required genes to be expressed. Epigenetic mechanisms such as DNA methylation, post-translational modifications to histone tails, and nucleosome positioning all potentially contribute to the changes in higher order chromatin structure during differentiation. The mammary gland is a particularly useful model to study these complex epigenetic processes since the majority of its development is postnatal, the gland is easily accessible, and development occurs in a highly reproducible manner. Inappropriate epigenetic remodelling can also drive tumourigenesis; thus, insights into epigenetic remodelling during mammary gland development advance our understanding of breast cancer aetiology. We review the current literature surrounding DNA methylation and histone modifications in the developing mammary gland and its implications for breast cancer.


Subject(s)
Breast Neoplasms/genetics , Breast/growth & development , Carcinogenesis/genetics , Epigenesis, Genetic/physiology , Animals , Breast/pathology , Breast Neoplasms/pathology , Cell Differentiation/genetics , Chromatin/metabolism , DNA Methylation/physiology , Female , Histone Code/physiology , Histones/metabolism , Humans , Mammary Glands, Animal/growth & development , Models, Animal , Stem Cells/physiology
8.
Sci Adv ; 10(27): eadl1197, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38959305

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is characterized by increasing fibrosis, which can enhance tumor progression and spread. Here, we undertook an unbiased temporal assessment of the matrisome of the highly metastatic KPC (Pdx1-Cre, LSL-KrasG12D/+, LSL-Trp53R172H/+) and poorly metastatic KPflC (Pdx1-Cre, LSL-KrasG12D/+, Trp53fl/+) genetically engineered mouse models of pancreatic cancer using mass spectrometry proteomics. Our assessment at early-, mid-, and late-stage disease reveals an increased abundance of nidogen-2 (NID2) in the KPC model compared to KPflC, with further validation showing that NID2 is primarily expressed by cancer-associated fibroblasts (CAFs). Using biomechanical assessments, second harmonic generation imaging, and birefringence analysis, we show that NID2 reduction by CRISPR interference (CRISPRi) in CAFs reduces stiffness and matrix remodeling in three-dimensional models, leading to impaired cancer cell invasion. Intravital imaging revealed improved vascular patency in live NID2-depleted tumors, with enhanced response to gemcitabine/Abraxane. In orthotopic models, NID2 CRISPRi tumors had less liver metastasis and increased survival, highlighting NID2 as a potential PDAC cotarget.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Proteomics , Animals , Humans , Mice , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/genetics , Cell Adhesion Molecules , Cell Line, Tumor , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Disease Models, Animal , Fibrosis , Gemcitabine , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Proteomics/methods
9.
iScience ; 26(4): 106477, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37091234

ABSTRACT

We have exploited islet-associated macrophages (IAMs) as a model of resident macrophage function, focusing on more physiological conditions than the commonly used extremes of M1 (inflammation) versus M2 (tissue remodeling) polarization. Under steady state, murine IAMs are metabolically poised between aerobic glycolysis and oxidative phosphorylation, and thereby exert a brake on glucose-stimulated insulin secretion (GSIS). This is underpinned by epigenetic remodeling via the metabolically regulated histone demethylase Kdm5a. Conversely, GSIS is enhanced by engaging Axl receptors on IAMs, or by augmenting their oxidation of glucose. Following high-fat feeding, efferocytosis is stimulated in IAMs in conjunction with Mertk and TGFß receptor signaling. This impairs GSIS and potentially contributes to ß-cell failure in pre-diabetes. Thus, IAMs serve as relays in many more settings than currently appreciated, fine-tuning insulin secretion in response to dynamic changes in the external environment. Intervening in this nexus might represent a means of preserving ß-cell function during metabolic disease.

10.
STAR Protoc ; 2(2): 100514, 2021 06 18.
Article in English | MEDLINE | ID: mdl-34013210

ABSTRACT

Chromatin immunoprecipitation (ChIP) is used to study interactions between proteins and DNA. Nuclear lysates are prepared, and chromatin is fragmented by sonication. Antibodies are used to purify a protein of interest (e.g., a transcription factor or histone mark) along with any bound DNA. The genomic binding sites can then be mapped by sequencing the bound DNA (ChIP-seq) or by qPCR if binding sites are already known. ChIP requires optimization for each cell type, and success is highly antibody dependent. This protocol can be adapted to other cell lines with careful optimization. For complete details on the use and execution of this protocol, please refer to Holliday et al. (2021).


Subject(s)
Breast Neoplasms/metabolism , Chromatin Immunoprecipitation , Histone Code , Mammary Glands, Human/metabolism , Neoplasm Proteins/metabolism , Transcription Factors/metabolism , Cell Line, Tumor , Female , Humans
11.
Cancers (Basel) ; 13(24)2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34944870

ABSTRACT

Diffuse midline gliomas (DMGs) are invariably fatal pediatric brain tumours that are inherently resistant to conventional therapy. In recent years our understanding of the underlying molecular mechanisms of DMG tumorigenicity has resulted in the identification of novel targets and the development of a range of potential therapies, with multiple agents now being progressed to clinical translation to test their therapeutic efficacy. Here, we provide an overview of the current therapies aimed at epigenetic and mutational drivers, cellular pathway aberrations and tumor microenvironment mechanisms in DMGs in order to aid therapy development and facilitate a holistic approach to patient treatment.

12.
iScience ; 24(2): 102072, 2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33554073

ABSTRACT

Inhibitor of differentiation (ID) proteins dimerize with basic HLH (bHLH) transcription factors, repressing transcription of lineage-specification genes across diverse cellular lineages. ID4 is a key regulator of mammary stem cells; however, the mechanism by which it achieves this is unclear. Here, we show that ID4 has a cell autonomous role in preventing myoepithelial differentiation of basal cells in mammary organoids and in vivo. ID4 positively regulates proliferative genes and negatively regulates genes involved in myoepithelial function. Mass spectrometry reveals that ID4 interacts with the bHLH protein HEB, which binds to E-box motifs in regulatory elements of basal developmental genes involved in extracellular matrix and the contractile cytoskeleton. We conclude that high ID4 expression in mammary basal stem cells antagonizes HEB transcriptional activity, preventing myoepithelial differentiation and allowing for appropriate tissue morphogenesis. Downregulation of ID4 during pregnancy modulates gene regulated by HEB, promoting specialization of basal cells into myoepithelial cells.

13.
Biomolecules ; 10(9)2020 09 08.
Article in English | MEDLINE | ID: mdl-32911668

ABSTRACT

The basic helix-loop-helix (bHLH) transcription factors inhibitor of differentiation 1 (Id1) and inhibitor of differentiation 3 (Id3) (referred to as Id) have an important role in maintaining the cancer stem cell (CSC) phenotype in the triple-negative breast cancer (TNBC) subtype. In this study, we aimed to understand the molecular mechanism underlying Id control of CSC phenotype and exploit it for therapeutic purposes. We used two different TNBC tumor models marked by either Id depletion or Id1 expression in order to identify Id targets using a combinatorial analysis of RNA sequencing and microarray data. Phenotypically, Id protein depletion leads to cell cycle arrest in the G0/G1 phase, which we demonstrate is reversible. In order to understand the molecular underpinning of Id proteins on the cell cycle phenotype, we carried out a large-scale small interfering RNA (siRNA) screen of 61 putative targets identified by using genomic analysis of two Id TNBC tumor models. Kinesin Family Member 11 (Kif11) and Aurora Kinase A (Aurka), which are critical cell cycle regulators, were further validated as Id targets. Interestingly, unlike in Id depletion conditions, Kif11 and Aurka knockdown leads to a G2/M arrest, suggesting a novel Id cell cycle mechanism, which we will explore in further studies. Therapeutic targeting of Kif11 to block the Id1-Kif11 axis was carried out using small molecular inhibitor ispinesib. We finally leveraged our findings to target the Id/Kif11 pathway using the small molecule inhibitor ispinesib in the Id+ CSC results combined with chemotherapy for better response in TNBC subtypes. This work opens up exciting new possibilities of targeting Id targets such as Kif11 in the TNBC subtype, which is currently refractory to chemotherapy. Targeting the Id1-Kif11 molecular pathway in the Id1+ CSCs in combination with chemotherapy and small molecular inhibitor results in more effective debulking of TNBC.


Subject(s)
Inhibitor of Differentiation Protein 1/genetics , Inhibitor of Differentiation Protein 1/metabolism , Kinesins/metabolism , Triple Negative Breast Neoplasms/drug therapy , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Aurora Kinase A/antagonists & inhibitors , Aurora Kinase A/genetics , Aurora Kinase A/metabolism , Benzamides/pharmacology , Cell Cycle/genetics , Cell Line, Tumor , Cell Self Renewal/drug effects , Female , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Kinesins/antagonists & inhibitors , Kinesins/genetics , Mice , Neoplastic Stem Cells/drug effects , Paclitaxel/pharmacology , Quinazolines/pharmacology , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism
14.
Front Cell Dev Biol ; 8: 552, 2020.
Article in English | MEDLINE | ID: mdl-32766238

ABSTRACT

Breast cancers display phenotypic and functional heterogeneity and several lines of evidence support the existence of cancer stem cells (CSCs) in certain breast cancers, a minor population of cells capable of tumor initiation and metastatic dissemination. Identifying factors that regulate the CSC phenotype is therefore important for developing strategies to treat metastatic disease. The Inhibitor of Differentiation Protein 1 (Id1) and its closely related family member Inhibitor of Differentiation 3 (Id3) (collectively termed Id) are expressed by a diversity of stem cells and are required for metastatic dissemination in experimental models of breast cancer. In this study, we show that ID1 is expressed in rare neoplastic cells within ER-negative breast cancers. To address the function of Id1 expressing cells within tumors, we developed independent murine models of Triple Negative Breast Cancer (TNBC) in which a genetic reporter permitted the prospective isolation of Id1+ cells. Id1+ cells are enriched for self-renewal in tumorsphere assays in vitro and for tumor initiation in vivo. Conversely, depletion of Id1 and Id3 in the 4T1 murine model of TNBC demonstrates that Id1/3 are required for cell proliferation and self-renewal in vitro, as well as primary tumor growth and metastatic colonization of the lung in vivo. Using combined bioinformatic analysis, we have defined a novel mechanism of Id protein function via negative regulation of the Roundabout Axon Guidance Receptor Homolog 1 (Robo1) leading to activation of a Myc transcriptional programme.

15.
Endocr Relat Cancer ; 23(9): R381-92, 2016 09.
Article in English | MEDLINE | ID: mdl-27412917

ABSTRACT

Inhibitor of differentiation (ID) proteins are key regulators of development and tumorigenesis. One member of this family, ID4, controls lineage commitment during mammary gland development by acting upstream of key developmental pathways. Recent evidence suggests an emerging role for ID4 as a lineage-dependent proto-oncogene that is overexpressed and amplified in a subset of basal-like breast cancers (BLBCs), conferring poor prognosis. Several lines of evidence suggest ID4 may suppress BRCA1 function in BLBC and in doing so, define a subset of BLBC patients who may respond to therapies traditionally used in BRCA1-mutant cancers. This review highlights recent advances in our understanding of the requirement for ID4 in mammary lineage commitment and the role for ID4 in BLBC. We address current shortfalls in this field and identify important areas of future research.


Subject(s)
BRCA1 Protein/metabolism , Breast Neoplasms/metabolism , Breast/metabolism , Epithelium/metabolism , Inhibitor of Differentiation Proteins/metabolism , Animals , Estrogen Receptor alpha/metabolism , Female , Humans , Oncogenes , Proto-Oncogene Mas
SELECTION OF CITATIONS
SEARCH DETAIL