Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 117
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 185(14): 2452-2468.e16, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35768006

ABSTRACT

COVID survivors frequently experience lingering neurological symptoms that resemble cancer-therapy-related cognitive impairment, a syndrome for which white matter microglial reactivity and consequent neural dysregulation is central. Here, we explored the neurobiological effects of respiratory SARS-CoV-2 infection and found white-matter-selective microglial reactivity in mice and humans. Following mild respiratory COVID in mice, persistently impaired hippocampal neurogenesis, decreased oligodendrocytes, and myelin loss were evident together with elevated CSF cytokines/chemokines including CCL11. Systemic CCL11 administration specifically caused hippocampal microglial reactivity and impaired neurogenesis. Concordantly, humans with lasting cognitive symptoms post-COVID exhibit elevated CCL11 levels. Compared with SARS-CoV-2, mild respiratory influenza in mice caused similar patterns of white-matter-selective microglial reactivity, oligodendrocyte loss, impaired neurogenesis, and elevated CCL11 at early time points, but after influenza, only elevated CCL11 and hippocampal pathology persisted. These findings illustrate similar neuropathophysiology after cancer therapy and respiratory SARS-CoV-2 infection which may contribute to cognitive impairment following even mild COVID.


Subject(s)
COVID-19 , Influenza, Human , Neoplasms , Animals , Humans , Influenza, Human/pathology , Mice , Microglia/pathology , Myelin Sheath , Neoplasms/pathology , SARS-CoV-2
2.
Proc Natl Acad Sci U S A ; 117(48): 30649-30660, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33199596

ABSTRACT

Myasthenia gravis (MG) is a neuromuscular, autoimmune disease caused by autoantibodies that target postsynaptic proteins, primarily the acetylcholine receptor (AChR) and inhibit signaling at the neuromuscular junction. The majority of patients under 50 y with AChR autoantibody MG have thymic lymphofollicular hyperplasia. The MG thymus is a reservoir of plasma cells that secrete disease-causing AChR autoantibodies and although thymectomy improves clinical scores, many patients fail to achieve complete stable remission without additional immunosuppressive treatments. We speculate that thymus-associated B cells and plasma cells persist in the circulation after thymectomy and that their persistence could explain incomplete responses to resection. We studied patients enrolled in a randomized clinical trial and used complementary modalities of B cell repertoire sequencing to characterize the thymus B cell repertoire and identify B cell clones that resided in the thymus and circulation before and 12 mo after thymectomy. Thymus-associated B cell clones were detected in the circulation by both mRNA-based and genomic DNA-based sequencing. These antigen-experienced B cells persisted in the circulation after thymectomy. Many circulating thymus-associated B cell clones were inferred to have originated and initially matured in the thymus before emigration from the thymus to the circulation. The persistence of thymus-associated B cells correlated with less favorable changes in clinical symptom measures, steroid dose required to manage symptoms, and marginal changes in AChR autoantibody titer. This investigation indicates that the diminished clinical response to thymectomy is related to persistent circulating thymus-associated B cell clones.


Subject(s)
B-Lymphocytes/metabolism , Lymphocyte Count , Myasthenia Gravis/blood , Thymus Gland/metabolism , Adolescent , Adult , Autoantibodies/immunology , B-Lymphocytes/immunology , Biomarkers , Clonal Evolution/genetics , Clonal Selection, Antigen-Mediated , Disease Susceptibility , Female , Humans , Male , Middle Aged , Models, Biological , Myasthenia Gravis/etiology , Radioimmunoassay , Receptors, Cholinergic/immunology , Thymectomy , Thymus Gland/cytology , Thymus Gland/immunology , V(D)J Recombination , Young Adult
3.
Am J Respir Cell Mol Biol ; 66(2): e1-e14, 2022 02.
Article in English | MEDLINE | ID: mdl-35103557

ABSTRACT

Advancements in methods, technology, and our understanding of the pathobiology of lung injury have created the need to update the definition of experimental acute lung injury (ALI). We queried 50 participants with expertise in ALI and acute respiratory distress syndrome using a Delphi method composed of a series of electronic surveys and a virtual workshop. We propose that ALI presents as a "multidimensional entity" characterized by four "domains" that reflect the key pathophysiologic features and underlying biology of human acute respiratory distress syndrome. These domains are 1) histological evidence of tissue injury, 2) alteration of the alveolar-capillary barrier, 3) presence of an inflammatory response, and 4) physiologic dysfunction. For each domain, we present "relevant measurements," defined as those proposed by at least 30% of respondents. We propose that experimental ALI encompasses a continuum of models ranging from those focusing on gaining specific mechanistic insights to those primarily concerned with preclinical testing of novel therapeutics or interventions. We suggest that mechanistic studies may justifiably focus on a single domain of lung injury, but models must document alterations of at least three of the four domains to qualify as "experimental ALI." Finally, we propose that a time criterion defining "acute" in ALI remains relevant, but the actual time may vary based on the specific model and the aspect of injury being modeled. The continuum concept of ALI increases the flexibility and applicability of the definition to multiple models while increasing the likelihood of translating preclinical findings to critically ill patients.


Subject(s)
Acute Lung Injury/pathology , Inflammation/physiopathology , Research Report/trends , Acute Lung Injury/immunology , Animals
4.
Circulation ; 144(4): 286-302, 2021 07 27.
Article in English | MEDLINE | ID: mdl-34030460

ABSTRACT

BACKGROUND: Cellular diversity of the lung endothelium has not been systematically characterized in humans. We provide a reference atlas of human lung endothelial cells (ECs) to facilitate a better understanding of the phenotypic diversity and composition of cells comprising the lung endothelium. METHODS: We reprocessed human control single-cell RNA sequencing (scRNAseq) data from 6 datasets. EC populations were characterized through iterative clustering with subsequent differential expression analysis. Marker genes were validated by fluorescent microscopy and in situ hybridization. scRNAseq of primary lung ECs cultured in vitro was performed. The signaling network between different lung cell types was studied. For cross-species analysis or disease relevance, we applied the same methods to scRNAseq data obtained from mouse lungs or from human lungs with pulmonary hypertension. RESULTS: Six lung scRNAseq datasets were reanalyzed and annotated to identify >15 000 vascular EC cells from 73 individuals. Differential expression analysis of EC revealed signatures corresponding to endothelial lineage, including panendothelial, panvascular, and subpopulation-specific marker gene sets. Beyond the broad cellular categories of lymphatic, capillary, arterial, and venous ECs, we found previously indistinguishable subpopulations; among venous EC, we identified 2 previously indistinguishable populations: pulmonary-venous ECs (COL15A1neg) localized to the lung parenchyma and systemic-venous ECs (COL15A1pos) localized to the airways and the visceral pleura; among capillary ECs, we confirmed their subclassification into recently discovered aerocytes characterized by EDNRB, SOSTDC1, and TBX2 and general capillary EC. We confirmed that all 6 endothelial cell types, including the systemic-venous ECs and aerocytes, are present in mice and identified endothelial marker genes conserved in humans and mice. Ligand-receptor connectome analysis revealed important homeostatic crosstalk of EC with other lung resident cell types. scRNAseq of commercially available primary lung ECs demonstrated a loss of their native lung phenotype in culture. scRNAseq revealed that endothelial diversity is maintained in pulmonary hypertension. Our article is accompanied by an online data mining tool (www.LungEndothelialCellAtlas.com). CONCLUSIONS: Our integrated analysis provides a comprehensive and well-crafted reference atlas of ECs in the normal lung and confirms and describes in detail previously unrecognized endothelial populations across a large number of humans and mice.


Subject(s)
Biomarkers , Endothelial Cells/metabolism , Lung/metabolism , Single-Cell Analysis , Capillaries , Computational Biology/methods , Databases, Genetic , Disease Susceptibility , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Humans , Lung/blood supply , Lung/cytology , Microcirculation , Organ Specificity , Pulmonary Artery , Pulmonary Veins , Single-Cell Analysis/methods , Transcriptome
5.
Proc Natl Acad Sci U S A ; 116(22): 10905-10910, 2019 05 28.
Article in English | MEDLINE | ID: mdl-31085641

ABSTRACT

In the temperate regions, seasonal influenza virus outbreaks correlate closely with decreases in humidity. While low ambient humidity is known to enhance viral transmission, its impact on host response to influenza virus infection and disease outcome remains unclear. Here, we showed that housing Mx1 congenic mice in low relative humidity makes mice more susceptible to severe disease following respiratory challenge with influenza A virus. We find that inhalation of dry air impairs mucociliary clearance, innate antiviral defense, and tissue repair. Moreover, disease exacerbated by low relative humidity was ameliorated in caspase-1/11-deficient Mx1 mice, independent of viral burden. Single-cell RNA sequencing revealed that induction of IFN-stimulated genes in response to viral infection was diminished in multiple cell types in the lung of mice housed in low humidity condition. These results indicate that exposure to dry air impairs host defense against influenza infection, reduces tissue repair, and inflicts caspase-dependent disease pathology.


Subject(s)
Disease Susceptibility/immunology , Humidity , Immunity, Mucosal/immunology , Orthomyxoviridae Infections/immunology , Respiratory Mucosa/immunology , Animals , Disease Models, Animal , Humans , Immunity, Innate/immunology , Influenza A virus , Influenza, Human , Mice , Mice, Congenic , Mice, Transgenic , Respiratory Mucosa/cytology , Respiratory Mucosa/drug effects , Respiratory Mucosa/metabolism
6.
J Vasc Interv Radiol ; 32(7): 1022-1028.e4, 2021 07.
Article in English | MEDLINE | ID: mdl-33811997

ABSTRACT

PURPOSE: To assess whether the effectiveness of thermal ablation (TA) and stereotactic body radiotherapy (SBRT) as initial treatments for stage I lung cancer varies depending on the histological subtype. MATERIALS AND METHODS: The 2004-2016 National Cancer Database was queried for patients with American Joint Committee on Cancer stage I lung cancer treated with TA or SBRT. Patients <18 years, those treated with surgery or chemotherapy, or those with unknown survival and follow-up were excluded. TA and SBRT patients were 1:5 propensity score matched separately for each histological subtype to adjust for confounders. Overall survival (OS) was assessed using Cox models. RESULTS: A total of 28,425 patients were included (SBRT, n = 27,478; TA, n = 947). TA was more likely to be used in Caucasian patients, those with more comorbidities and smaller neuroendocrine tumors (NETs) of the lower lobe, and those whose treatment had taken place in the northeastern United States. After propensity score matching, a cohort with 4,085 SBRT and 817 TA patients with balanced confounders was obtained. In this cohort, OS for TA and SBRT was comparable (hazard ratio = 1.07; 95% confidence interval,0.98-1.18; P = .13), although it varied by histological subtypes: higher OS for TA was observed in patients with non-small cell NETs (vs SBRT hazard ratio = 0.48; 95% confidence interval, 0.24-0.95; P = .04). No significant OS differences between TA and SBRT were noted for adenocarcinomas, squamous cell carcinomas, small cell carcinomas, and non-neuroendocrine large cell carcinomas (each, P > .1). CONCLUSIONS: OS following TA and SBRT for stage I lung cancer is comparable for most histological subtypes, except that OS is longer after TA in non-small cell NETs.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Radiosurgery , Carcinoma, Non-Small-Cell Lung/pathology , Humans , Lung Neoplasms/surgery , Neoplasm Staging , Treatment Outcome
7.
BMC Pulm Med ; 21(1): 184, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34074264

ABSTRACT

BACKGROUND: Current interstitial lung disease (ILD) diagnostic guidelines assess criteria across clinical, radiologic and pathologic domains. Significant interobserver variation in histopathologic evaluation has previously been shown but the specific source of these discrepancies is poorly documented. We sought to document specific areas of difficulty and develop improved criteria that would reduce overall interobserver variation. METHODS: Using an internet-based approach, we reviewed selected images of specific diagnostic features of ILD histopathology and whole slide images of fibrotic ILD. After an initial round of review, we confirmed the presence of interobserver variation among our group. We then developed refined criteria and reviewed a second set of cases. RESULTS: The initial round reproduced the existing literature on interobserver variation in diagnosis of ILD. Cases which were pre-selected as inconsistent with usual interstitial pneumonia/idiopathic pulmonary fibrosis (UIP/IPF) were confirmed as such by multi-observer review. Cases which were thought to be in the spectrum of chronic fibrotic ILD for which UIP/IPF were in the differential showed marked variation in nearly all aspects of ILD evaluation including extent of inflammation and extent and pattern of fibrosis. A proposed set of more explicit criteria had only modest effects on this outcome. While we were only modestly successful in reducing interobserver variation, we did identify specific reasons that current histopathologic criteria of fibrotic ILD are not well defined in practice. CONCLUSIONS: Any additional classification scheme must address interobserver variation in histopathologic diagnosis of fibrotic ILD order to remain clinically relevant. Improvements to tissue-based diagnostics may require substantial resources such as larger datasets or novel technologies to improve reproducibility. Benchmarks should be established for expected outcomes among clinically defined subgroups as a quality metric.


Subject(s)
Idiopathic Pulmonary Fibrosis/pathology , Lung Diseases, Interstitial/pathology , Observer Variation , Reference Standards , Humans , Idiopathic Pulmonary Fibrosis/diagnosis , Internationality , Lung Diseases, Interstitial/diagnosis , Reproducibility of Results
8.
Lab Invest ; 99(9): 1260-1265, 2019 09.
Article in English | MEDLINE | ID: mdl-31019290

ABSTRACT

The external validity of the scientific literature has recently come into question, popularly referred to as the "reproducibility crisis." It is now generally acknowledged that too many false positive or non-reproducible results are being published throughout the biomedical and social science literature due to misaligned incentives and poor methodology. Pathology is likely no exception to this problem, and may be especially prone to false positives due to common observational methodologies used in our research. Spurious findings in pathology contribute inefficiency to the scientific literature and detrimentally influence patient care. In particular, false positives in pathology affect patients through biomarker development, prognostic classification, and cancer overdiagnosis. We discuss possible sources of non-reproducible pathology studies and describe practical ways our field can improve research habits, especially among trainees.


Subject(s)
False Positive Reactions , Medical Overuse/prevention & control , Pathology , Humans , Pathologists/organization & administration , Pathologists/standards , Pathology/organization & administration , Pathology/standards , Reproducibility of Results
11.
FASEB J ; 30(12): 4056-4070, 2016 12.
Article in English | MEDLINE | ID: mdl-27609773

ABSTRACT

Pulmonary fibrosis is a progressive and often fatal condition that is believed to be partially orchestrated by macrophages. Mechanisms that control migration of these cells into and within the lung remain undefined. We evaluated the contributions of the semaphorin receptor, plexin C1 (PLXNC1), and the exocytic calcium sensor, synaptotagmin 7 (Syt7), in these processes. We evaluated the role of PLXNC1 in macrophage migration by using Boyden chambers and scratch tests, characterized its contribution to experimentally induced lung fibrosis in mice, and defined the mechanism for our observations. Our findings reveal that relative to control participants, patients with idiopathic pulmonary fibrosis demonstrate excessive monocyte migration and underexpression of PLXNC1 in the lungs and circulation, a finding that is recapitulated in the setting of scleroderma-related interstitial lung disease. Relative to wild type, PLXNC1-/- mouse macrophages are excessively migratory, and PLXNC1-/- mice show exacerbated collagen accumulation in response to either inhaled bleomycin or inducible lung targeted TGF-ß1 overexpression. These findings are ameliorated by replacement of PLXNC1 on bone marrow-derived cells or by genetic deletion of Syt7. These data demonstrate the previously unrecognized observation that PLXNC1 deficiency permits Syt7-mediated macrophage migration and enhances mammalian lung fibrosis.-Peng, X., Moore, M., Mathur, A., Zhou, Y., Sun, H., Gan, Y., Herazo-Maya, J. D., Kaminski, N., Hu, X., Pan, H., Ryu, C., Osafo-Addo, A., Homer, R. J., Feghali-Bostwick, C., Fares, W. H., Gulati, M., Hu, B., Lee, C.-G., Elias, J. A., Herzog, E. L. Plexin C1 deficiency permits synaptotagmin 7-mediated macrophage migration and enhances mammalian lung fibrosis.


Subject(s)
Macrophages/metabolism , Nerve Tissue Proteins/metabolism , Pulmonary Fibrosis/metabolism , Receptors, Cell Surface/metabolism , Receptors, Virus/metabolism , Synaptotagmins/metabolism , Animals , Disease Models, Animal , Humans , Lung/metabolism , Mice, Knockout , Nerve Tissue Proteins/deficiency , Pulmonary Fibrosis/genetics , Receptors, Cell Surface/deficiency , Receptors, Virus/deficiency , Transforming Growth Factor beta1/metabolism
12.
Am J Respir Cell Mol Biol ; 55(5): 722-735, 2016 11.
Article in English | MEDLINE | ID: mdl-27374190

ABSTRACT

Administration of supplemental oxygen remains a critical clinical intervention for survival of preterm infants with respiratory failure. However, prolonged exposure to hyperoxia can augment pulmonary damage, resulting in developmental lung diseases embodied as hyperoxia-induced acute lung injury and bronchopulmonary dysplasia (BPD). We sought to investigate the role of autophagy in hyperoxia-induced apoptotic cell death in developing lungs. We identified increased autophagy signaling in hyperoxia-exposed mouse lung epithelial-12 cells, freshly isolated fetal type II alveolar epithelial cells, lungs of newborn wild-type mice, and human newborns with respiratory distress syndrome and evolving and established BPD. We found that hyperoxia exposure induces autophagy in a Trp53-dependent manner in mouse lung epithelial-12 cells and in neonatal mouse lungs. Using pharmacological inhibitors and gene silencing techniques, we found that the activation of autophagy, upon hyperoxia exposure, demonstrated a protective role with an antiapoptotic response. Specifically, inhibiting regulatory-associated protein of mechanistic target of rapamycin (RPTOR) in hyperoxia settings, as evidenced by wild-type mice treated with torin2 or mice administered (Rptor) silencing RNA via intranasal delivery or Rptor+/-, limited lung injury by increased autophagy, decreased apoptosis, improved lung architecture, and increased survival. Furthermore, we identified increased protein expression of phospho-beclin1, light chain-3-II and lysosomal-associated membrane protein 1, suggesting altered autophagic flux in the lungs of human neonates with established BPD. Collectively, our study unveils a novel demonstration of enhancing autophagy and antiapoptotic effects, specifically through the inhibition of RPTOR as a potentially useful therapeutic target for the treatment of hyperoxia-induced acute lung injury and BPD in developing lungs.


Subject(s)
Acute Lung Injury/etiology , Acute Lung Injury/pathology , Adaptor Proteins, Signal Transducing/metabolism , Apoptosis , Autophagy , Hyperoxia/complications , Hyperoxia/pathology , Acute Lung Injury/metabolism , Alveolar Epithelial Cells/metabolism , Animals , Animals, Newborn , Apoptosis/drug effects , Autophagy/drug effects , Bronchopulmonary Dysplasia/complications , Bronchopulmonary Dysplasia/metabolism , Bronchopulmonary Dysplasia/pathology , Cell Line , Female , Humans , Hyperoxia/metabolism , Hypertension, Pulmonary/complications , Hypertension, Pulmonary/pathology , Hypertrophy, Right Ventricular/complications , Hypertrophy, Right Ventricular/pathology , Infant, Newborn , Lung/metabolism , Lung/pathology , Mice , Microtubule-Associated Proteins/metabolism , Naphthyridines/pharmacology , Phenotype , Regulatory-Associated Protein of mTOR , Time Factors , Tumor Suppressor Protein p53/metabolism
13.
Respir Res ; 16: 4, 2015 Jan 16.
Article in English | MEDLINE | ID: mdl-25591994

ABSTRACT

BACKGROUND: Earlier studies have reported that transforming growth factor beta 1(TGFß1) is a critical mediator of hyperoxia-induced acute lung injury (HALI) in developing lungs, leading to impaired alveolarization and a pulmonary phenotype of bronchopulmonary dysplasia (BPD). However, the mechanisms responsible for the TGFß1-induced inflammatory signals that lead to cell death and abnormal alveolarization are poorly understood. We hypothesized that TGFß1 signaling via TGFßR2 is necessary for the pathogenesis of the BPD pulmonary phenotype resulting from HALI. METHODS: We utilized lung epithelial cell-specific TGFß1 overexpressing transgenic and TGFßR2 null mutant mice to evaluate the effects on neonatal mortality as well as pulmonary inflammation and apoptosis in developing lungs. Lung morphometry was performed to determine the impaired alveolarization and multicolor flow cytometry studies were performed to detect inflammatory macrophages and monocytes in lungs. Apoptotic cell death was measured with TUNEL assay, immunohistochemistry and western blotting and protein expression of angiogenic mediators were also analyzed. RESULTS: Our data reveals that increased TGFß1 expression in newborn mice lungs leads to increased mortality, macrophage and immature monocyte infiltration, apoptotic cell death specifically in Type II alveolar epithelial cells (AECs), impaired alveolarization, and dysregulated angiogenic molecular markers. CONCLUSIONS: Our study has demonstrated the potential role of inhibition of TGFß1 signaling via TGFßR2 for improved survival, reduced inflammation and apoptosis that may provide insights for the development of potential therapeutic strategies targeted against HALI and BPD.


Subject(s)
Acute Lung Injury/metabolism , Apoptosis , Lung/metabolism , Pneumonia/metabolism , Protein Serine-Threonine Kinases/metabolism , Receptors, Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta1/biosynthesis , Acute Lung Injury/genetics , Acute Lung Injury/pathology , Acute Lung Injury/physiopathology , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/pathology , Animals , Animals, Newborn , Disease Models, Animal , Genotype , Humans , Hyperoxia/complications , Lung/pathology , Lung/physiopathology , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Phenotype , Pneumonia/genetics , Pneumonia/pathology , Pneumonia/physiopathology , Protein Serine-Threonine Kinases/deficiency , Protein Serine-Threonine Kinases/genetics , Receptor, Transforming Growth Factor-beta Type II , Receptors, Transforming Growth Factor beta/deficiency , Receptors, Transforming Growth Factor beta/genetics , Signal Transduction , Time Factors , Transforming Growth Factor beta1/genetics , Up-Regulation
14.
Am J Respir Crit Care Med ; 190(12): 1383-94, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25390970

ABSTRACT

RATIONALE: Cytokine receptors can be markers defining different T-cell subsets and considered as therapeutic targets. The association of IL-6 and IL-6 receptor α (IL-6Rα) with asthma was reported, suggesting their involvement in asthma. OBJECTIVES: To determine whether and how IL-6Rα defines a distinct effector memory (EM) CD8+ T-cell population in health and disease. METHODS: EM CD8+ T cells expressing IL-6Rα (IL-6Rα(high)) were identified in human peripheral blood and analyzed for function, gene, and transcription factor expression. The relationship of these cells with asthma was determined using blood and sputum. MEASUREMENTS AND MAIN RESULTS: A unique population of IL-6Rα(high) EM CD8+ T cells was found in peripheral blood. These cells that potently proliferated, survived, and produced high levels of the Th2-type cytokines IL-5 and IL-13 had increased levels of GATA3 and decreased levels of T-bet and Blimp-1 in comparison with other EM CD8+ T cells. In fact, GATA3 was required for IL-6Rα expression. Patients with asthma had an increased frequency of IL-6Rα(high) EM CD8+ T cells in peripheral blood compared with healthy control subjects. Also, IL-6Rα(high) EM CD8+ T cells exclusively produced IL-5 and IL-13 in response to asthma-associated respiratory syncytial virus and bacterial superantigens. CONCLUSIONS: Human IL-6Rα(high) EM CD8+ T cells is a unique cell subset that may serve as a reservoir for effector CD8+ T cells, particularly the ones producing Th2-type cytokines, and expand in asthma.


Subject(s)
Asthma/physiopathology , CD8-Positive T-Lymphocytes/physiology , Interleukin-13/physiology , Interleukin-5/physiology , Interleukin-6 Receptor alpha Subunit/physiology , Female , Flow Cytometry , Fluorescent Antibody Technique , Humans , Male , Middle Aged , Oligonucleotide Array Sequence Analysis , Reverse Transcriptase Polymerase Chain Reaction
15.
Am J Respir Crit Care Med ; 187(2): 180-8, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23220917

ABSTRACT

RATIONALE: Lymphocytes are increasingly associated with idiopathic pulmonary fibrosis (IPF). Semaphorin 7a (Sema 7a) participates in lymphocyte activation. OBJECTIVES: To define the relationship between Sema 7a and lymphocytes in IPF. METHODS: We characterized the significance of Sema 7a+ lymphocytes in humans with IPF and in a mouse model of lung fibrosis caused by lung-targeted, transgenic overexpression of TGF-ß1. We determined the site of Sema 7a expression in human and murine lungs and circulation and used adoptive transfer approaches to define the relevance of lymphocytes coexpressing Sema7a and the markers CD19, CD4, or CD4+CD25+FoxP3+ in TGF-ß1-induced murine lung fibrosis. MEASUREMENTS AND MAIN RESULTS: Subjects with IPF show expression of Sema 7a on lung CD4+ cells and circulating CD4+ or CD19+ cells. Sema 7a expression is increased on CD4+ cells and CD4+CD25+FoxP3+ regulatory T cells, but not CD19+ cells, in subjects with progressive IPF. Sema 7a is expressed on lymphocytes expressing CD4 but not CD19 in the lungs and spleen of TGF-ß1-transgenic mice. Sema 7a expressing bone marrow-derived cells induce lung fibrosis and alter the production of T-cell mediators, including IFN-γ, IL-4, IL-17A, and IL-10. These effects require CD4 but not CD19. In comparison to Sema 7a-CD4+CD25+FoxP3+ cells, Sema7a+CD4+CD25+FoxP3+ cells exhibit reduced expression of regulatory genes such as IL-10, and adoptive transfer of these cells induces fibrosis and remodeling in the TGF-ß1-exposed murine lung. CONCLUSIONS: Sema 7a+CD4+CD25+FoxP3+ regulatory T cells are associated with disease progression in subjects with IPF and induce fibrosis in the TGF-ß1-exposed murine lung.


Subject(s)
Antigens, CD/physiology , Idiopathic Pulmonary Fibrosis/etiology , Semaphorins/physiology , T-Lymphocytes, Regulatory/physiology , Transforming Growth Factor beta1/physiology , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/physiology , Disease Models, Animal , Humans , Idiopathic Pulmonary Fibrosis/immunology , Idiopathic Pulmonary Fibrosis/physiopathology , Interleukin-10/physiology , Mice , Mice, Inbred C57BL , Mice, Transgenic
16.
Cancer Discov ; 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38241033

ABSTRACT

The limited efficacy of currently approved immunotherapies in EGFR-driven lung adenocarcinoma (LUAD) underscores the need to better understand alternative mechanisms governing local immunosuppression to fuel novel therapies. Elevated surfactant and GM-CSF secretion from the transformed epithelium induces tumor-associated alveolar macrophage (TA-AM) proliferation which supports tumor growth by rewiring inflammatory functions and lipid metabolism. TA-AM properties are driven by increased GM-CSF-PPARγ signaling and inhibition of airway GM-CSF or PPARγ in TA-AMs suppresses cholesterol efflux to tumor cells, which impairs EGFR phosphorylation and restrains LUAD progression. In the absence of TA-AM metabolic support, LUAD cells compensate by increasing cholesterol synthesis, and blocking PPARγ in TA-AMs simultaneous with statin therapy further suppresses tumor progression and increases proinflammatory immune responses. These results reveal new therapeutic combinations for immunotherapy resistant EGFR-mutant LUADs and demonstrate how cancer cells can metabolically co-opt TA-AMs through GM-CSF-PPARγ signaling to provide nutrients that promote oncogenic signaling and growth.

17.
Cancer Discov ; : OF1-OF22, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38270272

ABSTRACT

The limited efficacy of currently approved immunotherapies in EGFR-driven lung adenocarcinoma (LUAD) underscores the need to better understand alternative mechanisms governing local immunosuppression to fuel novel therapies. Elevated surfactant and GM-CSF secretion from the transformed epithelium induces tumor-associated alveolar macrophage (TA-AM) proliferation, which supports tumor growth by rewiring inflammatory functions and lipid metabolism. TA-AM properties are driven by increased GM-CSF-PPARγ signaling and inhibition of airway GM-CSF or PPARγ in TA-AMs suppresses cholesterol efflux to tumor cells, which impairs EGFR phosphorylation and restrains LUAD progression. In the absence of TA-AM metabolic support, LUAD cells compensate by increasing cholesterol synthesis, and blocking PPARγ in TA-AMs simultaneous with statin therapy further suppresses tumor progression and increases proinflammatory immune responses. These results reveal new therapeutic combinations for immunotherapy-resistant EGFR-mutant LUADs and demonstrate how cancer cells can metabolically co-opt TA-AMs through GM-CSF-PPARγ signaling to provide nutrients that promote oncogenic signaling and growth. SIGNIFICANCE: Alternate strategies harnessing anticancer innate immunity are required for lung cancers with poor response rates to T cell-based immunotherapies. This study identifies a targetable, mutually supportive, metabolic relationship between macrophages and transformed epithelium, which is exploited by tumors to obtain metabolic and immunologic support to sustain proliferation and oncogenic signaling.

18.
Arch Pathol Lab Med ; 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38244054

ABSTRACT

CONTEXT.­: Artificial intelligence algorithms hold the potential to fundamentally change many aspects of society. Application of these tools, including the publicly available ChatGPT, has demonstrated impressive domain-specific knowledge in many areas, including medicine. OBJECTIVES.­: To understand the level of pathology domain-specific knowledge for ChatGPT using different underlying large language models, GPT-3.5 and the updated GPT-4. DESIGN.­: An international group of pathologists (n = 15) was recruited to generate pathology-specific questions at a similar level to those that could be seen on licensing (board) examinations. The questions (n = 15) were answered by GPT-3.5, GPT-4, and a staff pathologist that recently passed their Canadian pathology licensing exams. Participants were instructed to score answers on a 5-point scale and to predict which answer was written by ChatGPT. RESULTS.­: GPT-3.5 performed at a similar level to the staff pathologist, while GPT-4 outperformed both. The overall score for both GPT-3.5 and GPT-4 was within the range of meeting expectations for a trainee writing licensing examinations. In all but one question, the reviewers were able to correctly identify the answers generated by GPT-3.5. CONCLUSIONS.­: By demonstrating the ability of ChatGPT to answer pathology-specific questions at a level similar to (GPT-3.5) or exceeding (GPT-4) a trained pathologist, this study highlights the potential of large language models to be transformative in this space. In the future, more advanced iterations of these algorithms with increased domain-specific knowledge may have the potential to assist pathologists and enhance pathology resident training.

19.
Am J Respir Cell Mol Biol ; 48(6): 749-57, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23470621

ABSTRACT

We noted a marked increase in cyclooxygenase-2 (Cox2) and the activation of the endoplasmic reticulum (ER) stress pathway in newborn murine lung on exposure to hyperoxia and IFN-γ. We sought to evaluate Cox2-mediated ER stress pathway activation in hyperoxia-induced and IFN-γ-mediated injury in developing lungs. We applied in vivo genetic gain-of-function and genetic/chemical inhibition, as well as in vitro loss-of-function genetic strategies. Hyperoxia-induced and IFN-γ-mediated impaired alveolarization was rescued by Cox2 inhibition, using celecoxib. The use of small interfering RNA against the ER stress pathway mediator, the C/EBP homologous protein (CHOP; also known as growth arrest and DNA damage-inducible gene 153/GADD153), alleviated cell death in alveolar epithelial cells as well as in hyperoxia-induced and IFN-γ-mediated murine models of bronchopulmonary dysplasia (BPD). In addition, CHOP siRNA also restored alveolarization in the in vivo models. Furthermore, as evidence of clinical relevance, we show increased concentrations of Cox2 and ER stress pathway mediators in human lungs with BPD. Cox2, via CHOP, may significantly contribute to the final common pathway of hyperoxia-induced and IFN-γ-mediated injury in developing lungs and human BPD.


Subject(s)
Cyclooxygenase 2/metabolism , Endoplasmic Reticulum Stress , Hyperoxia/pathology , Interferon-gamma/metabolism , Animals , Animals, Newborn , Bronchopulmonary Dysplasia/metabolism , Bronchopulmonary Dysplasia/pathology , Celecoxib , Cell Death , Cyclooxygenase 2/genetics , Cyclooxygenase 2 Inhibitors/pharmacology , Humans , Immunohistochemistry , Infant, Newborn , Interferon-gamma/genetics , Lung/drug effects , Lung/embryology , Lung/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Pyrazoles/pharmacology , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Sulfonamides/pharmacology , Transcription Factor CHOP/genetics , Transcription Factor CHOP/metabolism
20.
Am J Physiol Lung Cell Mol Physiol ; 304(2): L112-24, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23125252

ABSTRACT

Although previous literature suggests that interleukin (IL)-13, a T-helper type 2 cell effector cytokine, might be involved in the pathogenesis of pulmonary hypertension (PH), direct proof is lacking. Furthermore, a potential mechanism underlying IL-13-induced PH has never been explored. This study's goal was to investigate the role and mechanism of IL-13 in the pathogenesis of PH. Lung-specific IL-13-overexpressing transgenic (Tg) mice were examined for hemodynamic changes and pulmonary vascular remodeling. IL-13 Tg mice spontaneously developed PH phenotype by the age of 2 mo with increased expression and activity of arginase 2 (Arg2). The role of Arg2 in the development of IL-13-stimulated PH was further investigated using Arg2 and IL-13 receptor α2 (Rα2) null mutant mice and the small-interfering RNA (siRNA)-silencing approach in vivo and in vitro, respectively. IL-13-stimulated medial thickening of pulmonary arteries and right ventricle systolic pressure were significantly decreased in the IL-13 Tg mice with Arg2 null mutation. On the other hand, the production of nitric oxide was further increased in the lungs of these mice. In our in vitro evaluations, the recombinant IL-13 treatment significantly enhanced the proliferation of human pulmonary artery smooth muscle cells in an Arg2-dependent manner. The IL-13-stimulated cellular proliferation and the expression of Arg2 in hpaSMC were markedly decreased with IL-13Rα2 siRNA silencing. Our studies demonstrate that IL-13 contributes to the development of PH via an IL-13Rα2-Arg2-dependent pathway. The intervention of this pathway could be a potential therapeutic target in pulmonary arterial hypertension.


Subject(s)
Arginase/physiology , Hypertension, Pulmonary/etiology , Interleukin-13 Receptor alpha2 Subunit/physiology , Interleukin-13/pharmacology , Animals , Cell Proliferation/drug effects , Humans , Mice , Mice, Transgenic , Myocytes, Smooth Muscle/drug effects , Pulmonary Artery/cytology
SELECTION OF CITATIONS
SEARCH DETAIL