Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Mod Pathol ; 37(2): 100377, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37926422

ABSTRACT

Conventional histopathology involves expensive and labor-intensive processes that often consume tissue samples, rendering them unavailable for other analyses. We present a novel end-to-end workflow for pathology powered by hyperspectral microscopy and deep learning. First, we developed a custom hyperspectral microscope to nondestructively image the autofluorescence of unstained tissue sections. We then trained a deep learning model to use autofluorescence to generate virtual histologic stains, which avoids the cost and variability of chemical staining procedures and conserves tissue samples. We showed that the virtual images reproduce the histologic features present in the real-stained images using a randomized nonalcoholic steatohepatitis (NASH) scoring comparison study, where both real and virtual stains are scored by pathologists (D.T., A.D.B., R.K.P.). The test showed moderate-to-good concordance between pathologists' scoring on corresponding real and virtual stains. Finally, we developed deep learning-based models for automated NASH Clinical Research Network score prediction. We showed that the end-to-end automated pathology platform is comparable with an independent panel of pathologists for NASH Clinical Research Network scoring when evaluated against the expert pathologist consensus scores. This study provides proof of concept for this virtual staining strategy, which could improve cost, efficiency, and reliability in pathology and enable novel approaches to spatial biology research.


Subject(s)
Deep Learning , Non-alcoholic Fatty Liver Disease , Humans , Microscopy , Reproducibility of Results , Pathologists
2.
Mod Pathol ; 37(11): 100573, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39069201

ABSTRACT

The tissue diagnosis of adenocarcinoma and intraductal carcinoma of the prostate includes Gleason grading of tumor morphology on the hematoxylin and eosin stain and immunohistochemistry markers on the prostatic intraepithelial neoplasia-4 stain (CK5/6, P63, and AMACR). In this work, we create an automated system for producing both virtual hematoxylin and eosin and prostatic intraepithelial neoplasia-4 immunohistochemistry stains from unstained prostate tissue using a high-throughput hyperspectral fluorescence microscope and artificial intelligence and machine learning. We demonstrate that the virtual stainer models can produce high-quality images suitable for diagnosis by genitourinary pathologists. Specifically, we validate our system through extensive human review and computational analysis, using a previously validated Gleason scoring model, and an expert panel, on a large data set of test slides. This study extends our previous work on virtual staining from autofluorescence, demonstrates the clinical utility of this technology for prostate cancer, and exemplifies a rigorous standard of qualitative and quantitative evaluation for digital pathology.

3.
Nano Lett ; 14(1): 311-7, 2014 Jan 08.
Article in English | MEDLINE | ID: mdl-24308662

ABSTRACT

This Letter features a new, scalable fabrication method and experimental characterization of glass-filled apertures exhibiting extraordinary transmission. These apertures are fabricated with sizes, aspect ratios, shapes, and side-wall profiles previously impossible to create. The fabrication method presented utilizes top-down lithography to etch silicon nanostructures. These nanostructures are oxidized to provide a transparent template for the deposition of a plasmonic metal. Gold is deposited around these structures, reflowed, and the surface is planarized. Finally, a window is etched through the substrate to provide optical access. Among the structures created and tested are apertures with height to diameter aspect ratios of 8:1, constructed with rectangular, square, cruciform, and coupled cross sections, with tunable polarization sensitivity and displaying unique properties based on their sculpted side-wall shape. Transmission data from these aperture arrays is collected and compared to examine the role of spacing, size, and shape on their overall spectral response. The structures this Letter describes can have a variety of novel applications from the creation of new types of light sources to massively multiplexed biosensors to subdiffraction limit imaging techniques.


Subject(s)
Glass/chemistry , Gold/chemistry , Lenses , Metal Nanoparticles/chemistry , Nanotechnology/instrumentation , Refractometry/instrumentation , Equipment Design , Equipment Failure Analysis , Light , Scattering, Radiation
4.
Anal Chem ; 85(16): 7629-36, 2013 Aug 20.
Article in English | MEDLINE | ID: mdl-23763357

ABSTRACT

We present a novel method for the encoding and decoding of multiplexed biochemical assays. The method enables a theoretically unlimited number of independent targets to be detected and uniquely identified in any combination in the same sample. For example, the method offers easy access to 12-plex and larger PCR assays, as contrasted to the current 4-plex assays. This advancement would allow for large panels of tests to be run simultaneously in the same sample, saving reagents, time, consumables, and manual labor, while also avoiding the traditional loss of sensitivity due to sample aliquoting. Thus, the presented method is a major technological breakthrough with far-reaching impact on biotechnology, biomedical science, and clinical diagnostics. Herein, we present the mathematical theory behind the method as well as its experimental proof of principle using Taqman PCR on sequences specific to infectious diseases.


Subject(s)
Color , Reverse Transcriptase Polymerase Chain Reaction/methods , Biological Assay
5.
Nano Lett ; 10(11): 4423-8, 2010 Nov 10.
Article in English | MEDLINE | ID: mdl-20919695

ABSTRACT

Visible and near-IR photoluminescence (PL) is reported from sub-10 nm silicon nanopillars. Pillars were plasma etched from single crystal Si wafers and thinned by utilizing strain-induced, self-terminating oxidation of cylindrical structures. PL, lifetime, and transmission electron microscopy were performed to measure the dimensions and emission characteristics of the pillars. The peak PL energy was found to blue shift with narrowing pillar diameter in accordance with a quantum confinement effect. The blue shift was quantified using a tight binding method simulation that incorporated the strain induced by the thermal oxidation process. These pillars show promise as possible complementary metal oxide semiconductor compatible silicon devices in the form of light-emitting diode or laser structures.


Subject(s)
Lighting/instrumentation , Luminescent Measurements/instrumentation , Nanostructures/chemistry , Nanostructures/ultrastructure , Silicon/chemistry , Crystallization/methods , Equipment Design , Equipment Failure Analysis , Infrared Rays , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Nanotechnology/methods , Particle Size , Surface Properties
6.
Lab Chip ; 21(21): 4262-4273, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34617550

ABSTRACT

Droplet microfluidics is a commercially successful technology, widely used in single cell sequencing and droplet PCR. Combining droplet making with droplet sorting has also been demonstrated, but so far found limited use, partly due to difficulties in scaling manufacture with injection molded plastics. We introduce a droplet sorting system with several new elements, including: 1) an electrode design combining metallic and ionic liquid parts, 2) a modular, multi-sorting fluidic design with features for keeping inter-droplet distances constant, 3) using timing parameters calculated from fluorescence or scatter signal triggers to precisely actuate dozens of sorting electrodes, 4) droplet collection techniques, including ability to collect a single droplet, and 5) a new emulsion breaking method to collect aqueous samples for downstream analysis. We use these technologies to build a fluorescence based cell sorter that can sort with high (>90%) purity. We also show that these microfluidic designs can be translated into injection molded thermoplastic, suitable for industrial production. Finally, we tally the advantages and limitations of these devices.


Subject(s)
Microfluidics , Water , Electrodes , Emulsions , Flow Cytometry
7.
Article in English | MEDLINE | ID: mdl-24081254

ABSTRACT

The uterine cervix softens, shortens, and dilates throughout pregnancy in response to progressive disorganization of its layered collagen microstructure. This process is an essential part of normal pregnancy, but premature changes are associated with preterm birth. Clinically, there are no reliable noninvasive methods to objectively measure cervical softening or assess cervical microstructure. The goal of these preliminary studies was to evaluate the feasibility of using an intracavity ultrasound array to generate acoustic radiation force impulse (ARFI) excitations in the uterine cervix through simulation, and to optimize the acoustic radiation force (ARF) excitation for shear wave elasticity imaging (SWEI) of the tissue stiffness. The cervix is a unique soft tissue target for SWEI because it has significantly greater acoustic attenuation (α = 1.3 to 2.0 dB·cm(-1)·MHz(-)1) than other soft tissues, and the pathology being studied tends to lead to an increase in tissue compliance, with healthy cervix being relatively stiff compared with other soft tissues (E ≈ 25 kPa). Additionally, the cervix can only be accessed in vivo using a transvaginal or catheter-based array, which places additional constraints on the excitation focal characteristics that can be used during SWEI. Finite element method (FEM) models of SWEI show that larger-aperture, catheter-based arrays can utilize excitation frequencies up to 7 MHz to generate adequate focal gain up to focal depths 10 to 15 mm deep, with higher frequencies suffering from excessive amounts of near-field acoustic attenuation. Using full-aperture excitations can yield ~40% increases in ARFI-induced displacements, but also restricts the depth of field of the excitation to ~0.5 mm, compared with 2 to 6 mm, which limits the range that can be used for shear wave characterization of the tissue. The center-frequency content of the shear wave particle velocity profiles ranges from 1.5 to 2.5 kHz, depending on the focal configuration and the stiffness of the material being imaged. Overall, SWEI is possible using catheter-based imaging arrays to generate adequate displacements in cervical tissue for shear wave imaging, although specific considerations must be made when optimizing these arrays for this shear wave imaging application.


Subject(s)
Cervix Uteri/diagnostic imaging , Elasticity Imaging Techniques/instrumentation , Elasticity Imaging Techniques/methods , Models, Biological , Catheters , Elastic Modulus , Feasibility Studies , Female , Finite Element Analysis , Humans
8.
Nanoscale ; 5(3): 927-31, 2013 Feb 07.
Article in English | MEDLINE | ID: mdl-23292113

ABSTRACT

In order to expand the use of nanoscaled silicon structures we present a new etching method that allows us to shape silicon with sub-10 nm precision. This top-down, CMOS compatible etching scheme allows us to fabricate silicon devices with quantum behavior without relying on difficult lateral lithography. We utilize this novel etching process to create quantum dots, quantum wires, vertical transistors and ultra-high-aspect ratio structures. We believe that this etching technique will have broad and significant impacts and applications in nano-photonics, bio-sensing, and nano-electronics.


Subject(s)
Crystallization/methods , Nanostructures/chemistry , Nanostructures/ultrastructure , Quantum Dots , Silicon/chemistry , Transistors, Electronic , Equipment Design , Equipment Failure Analysis , Materials Testing , Molecular Conformation , Particle Size , Surface Properties
9.
Article in English | MEDLINE | ID: mdl-21590555

ABSTRACT

Anterior cruciate ligament (ACL) disruption is a common injury that is detrimental to an athlete's quality of life. Determining the mechanisms that cause ACL injury is important in order to develop proper interventions. A failure locus defined as various combinations of loadings and movements, internal/external rotation of femur and valgus and varus moments at a 25(o) knee flexion angle leading to ACL failure was obtained. The results indicated that varus and valgus movements were more dominant to the ACL injury than femoral rotation. Also, Von Mises stress in the lateral tibial cartilage during the valgus ACL injury mechanism was 83% greater than that of the medial cartilage during the varus mechanism of ACL injury. The results of this study could be used to develop training programmes focused on the avoidance of the described combination of movements which may lead to ACL injury.


Subject(s)
Anterior Cruciate Ligament Injuries , Anterior Cruciate Ligament/physiopathology , Knee Injuries/etiology , Knee Injuries/physiopathology , Models, Biological , Range of Motion, Articular , Weight-Bearing , Computer Simulation , Elastic Modulus , Finite Element Analysis , Humans , Stress, Mechanical , Tensile Strength
SELECTION OF CITATIONS
SEARCH DETAIL