Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Mol Ther ; 29(11): 3258-3273, 2021 11 03.
Article in English | MEDLINE | ID: mdl-33974998

ABSTRACT

Dysregulated adenosine-to-inosine (A-to-I) RNA editing is implicated in various cancers. However, no available RNA editing inhibitors have so far been developed to inhibit cancer-associated RNA editing events. Here, we decipher the RNA secondary structure of antizyme inhibitor 1 (AZIN1), one of the best-studied A-to-I editing targets in cancer, by locating its editing site complementary sequence (ECS) at the 3' end of exon 12. Chemically modified antisense oligonucleotides (ASOs) that target the editing region of AZIN1 caused a substantial exon 11 skipping, whereas ECS-targeting ASOs effectively abolished AZIN1 editing without affecting splicing and translation. We demonstrate that complete 2'-O-methyl (2'-O-Me) sugar ring modification in combination with partial phosphorothioate (PS) backbone modification may be an optimal chemistry for editing inhibition. ASO3.2, which targets the ECS, specifically inhibits cancer cell viability in vitro and tumor incidence and growth in xenograft models. Our results demonstrate that this AZIN1-targeting, ASO-based therapeutics may be applicable to a wide range of tumor types.


Subject(s)
Carrier Proteins/genetics , Gene Targeting , RNA Editing , Animals , Base Sequence , Cell Line, Tumor , Cell Proliferation , Cell Survival/genetics , Disease Models, Animal , Exons , Gene Expression Regulation, Neoplastic , Gene Targeting/methods , Genetic Therapy/methods , Humans , Mice , Neoplasms/genetics , Neoplasms/therapy , Oligonucleotides, Antisense/genetics , Xenograft Model Antitumor Assays
2.
J Hepatol ; 74(1): 135-147, 2021 01.
Article in English | MEDLINE | ID: mdl-32693003

ABSTRACT

BACKGROUND & AIMS: RNA editing introduces nucleotide changes in RNA sequences. Recent studies have reported that aberrant adenosine-to-inosine RNA editing is implicated in cancers. Until now, very few functionally important protein-recoding editing targets have been discovered. Here, we investigated the role of a recently discovered protein-recoding editing target COPA (coatomer subunit α) in hepatocellular carcinoma (HCC). METHODS: Clinical implication of COPA editing was studied in a cohort of 125 HCC patients. CRISPR/Cas9-mediated knockout of the editing site complementary sequence (ECS) was used to delete edited COPA transcripts endogenously. COPA editing-mediated change in its transcript or protein stability was investigated upon actinomycin D or cycloheximide treatment, respectively. Functional difference in tumourigenesis between wild-type and edited COPA (COPAWTvs. COPAI164V) and the exact mechanisms were also studied in cell models and mice. RESULTS: ADAR2 binds to double-stranded RNA formed between edited exon 6 and the ECS at intron 6 of COPA pre-mRNA, causing an isoleucine-to-valine substitution at residue 164. Reduced editing of COPA is implicated in the pathogenesis of HCC, and more importantly, it may be involved in many cancer types. Upon editing, COPAWT switches from a tumour-promoting gene to a tumour suppressor that has a dominant-negative effect. Moreover, COPAI164V may undergo protein conformational change and therefore become less stable than COPAWT. Mechanistically, COPAI164V may deactivate the PI3K/AKT/mTOR pathway through downregulation of caveolin-1 (CAV1). CONCLUSIONS: We uncover an RNA editing-associated mechanism of hepatocarcinogenesis by which downregulation of ADAR2 caused the loss of tumour suppressive COPAI164V and concurrent accumulation of tumour-promoting COPAWT in tumours; a rapid degradation of COPAI164V protein and hyper-activation of the PI3K/AKT/mTOR pathway further promote tumourigenesis. LAY SUMMARY: RNA editing is a process in which RNA is changed after it is made from DNA, resulting in an altered gene product. In this study, we found that RNA editing of a gene known as coatomer subunit α (COPA) is lower in tumour samples and discovered that this editing process changes COPA protein from a tumour-promoting form to a tumour-suppressive form. Loss of the edited COPA promotes the development of liver cancer.


Subject(s)
Carcinogenesis/genetics , Carcinoma, Hepatocellular , Coatomer Protein/genetics , Gene Expression Regulation/genetics , Liver Neoplasms , RNA Editing/genetics , Adenosine Deaminase/genetics , Animals , Base Sequence , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/therapy , Caveolin 1/metabolism , Cell Line , Down-Regulation , Genes, Tumor Suppressor , Humans , Liver Neoplasms/genetics , Liver Neoplasms/therapy , Mice , Neoplasm Proteins , Protein Stability , RNA-Binding Proteins/genetics
3.
Nucleic Acids Res ; 46(15): 7953-7969, 2018 09 06.
Article in English | MEDLINE | ID: mdl-29796672

ABSTRACT

Adenosine-to-inosine (A-to-I) RNA editing entails the enzymatic deamination of adenosines to inosines by adenosine deaminases acting on RNA (ADARs). Dysregulated A-to-I editing has been implicated in various diseases, including cancers. However, the precise factors governing the A-to-I editing and their physiopathological implications remain as a long-standing question. Herein, we unravel that DEAH box helicase 9 (DHX9), at least partially dependent of its helicase activity, functions as a bidirectional regulator of A-to-I editing in cancer cells. Intriguingly, the ADAR substrate specificity determines the opposing effects of DHX9 on editing as DHX9 silencing preferentially represses editing of ADAR1-specific substrates, whereas augments ADAR2-specific substrate editing. Analysis of 11 cancer types from The Cancer Genome Atlas (TCGA) reveals a striking overexpression of DHX9 in tumors. Further, tumorigenicity studies demonstrate a helicase-dependent oncogenic role of DHX9 in cancer development. In sum, DHX9 constitutes a bidirectional regulatory mode in A-to-I editing, which is in part responsible for the dysregulated editome profile in cancer.


Subject(s)
Adenosine/metabolism , DEAD-box RNA Helicases/metabolism , Inosine/metabolism , Neoplasm Proteins/metabolism , Neoplasms/metabolism , RNA Editing , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Animals , Antibiotics, Antineoplastic/pharmacology , Cell Line, Tumor , DEAD-box RNA Helicases/genetics , Deamination , Doxorubicin/pharmacology , HEK293 Cells , Humans , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Neoplasm Proteins/genetics , Neoplasms/drug therapy , Neoplasms/genetics , RNA Interference , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Xenograft Model Antitumor Assays/methods
4.
Cell Biol Int ; 43(6): 695-705, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30977566

ABSTRACT

Cardiac hypertrophy is a common pathological change found in various cardiovascular diseases. Although it has long been recognized as an important risk factor responsible for heart failure, there is still a lack of effective treatments in clinic. Chrysophanol is a natural compound with multiple biological activities and protective roles in the cardiovascular system. However, its potential effect on cardiac hypertrophy remains unclear. In the current study, we found that chrysophanol could protect against isoproterenol (ISO)-induced cardiac hypertrophy both in vitro and in vivo. Increase of cell surface and hypertrophic marker expression induced by ISO in neonatal rat cardiomyocytes was downregulated by chrysophanol. Moreover, chrysophanol ameliorated the abnormal changes of cardiac structure and function in rats subjected to ISO injection, as shown by echocardiography and morphometry measurements. Further mechanistical investigation demonstrated that chrysophanol inhibited phosphorylation of Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) induced by ISO. Nuclear translocation of STAT3 and transcription of downstream genes promoted by ISO treatment were also remarkably suppressed by chrysophanol. Taken together, our findings revealed that chrysophanol attenuated ISO-induced cardiac hypertrophy by inhibiting JAK2/STAT3 signaling pathway. Chrysophanol may be a potential candidate compound for the prevention and treatment of hypertrophy-related cardiomyopathy.


Subject(s)
Anthraquinones/pharmacology , Cardiomegaly/drug therapy , Janus Kinase 2/antagonists & inhibitors , STAT3 Transcription Factor/antagonists & inhibitors , Animals , Animals, Newborn , Anthraquinones/metabolism , Cardiomegaly/enzymology , Cardiomegaly/metabolism , Cardiomyopathies/drug therapy , Isoproterenol/pharmacology , Male , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Phosphorylation , Rats , Rats, Sprague-Dawley , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects
5.
Nucleic Acids Res ; 45(18): 10436-10451, 2017 Oct 13.
Article in English | MEDLINE | ID: mdl-28985428

ABSTRACT

Adenosine-to-inosine (A-to-I) RNA editing, catalyzed by Adenosine DeAminases acting on double-stranded RNA(dsRNA) (ADAR), occurs predominantly in the 3' untranslated regions (3'UTRs) of spliced mRNA. Here we uncover an unanticipated link between ADARs (ADAR1 and ADAR2) and the expression of target genes undergoing extensive 3'UTR editing. Using METTL7A (Methyltransferase Like 7A), a novel tumor suppressor gene with multiple editing sites at its 3'UTR, we demonstrate that its expression could be repressed by ADARs beyond their RNA editing and double-stranded RNA (dsRNA) binding functions. ADARs interact with Dicer to augment the processing of pre-miR-27a to mature miR-27a. Consequently, mature miR-27a targets the METTL7A 3'UTR to repress its expression level. In sum, our study unveils that the extensive 3'UTR editing of METTL7A is merely a footprint of ADAR binding, and there are a subset of target genes that are equivalently regulated by ADAR1 and ADAR2 through their non-canonical RNA editing and dsRNA binding-independent functions, albeit maybe less common. The functional significance of ADARs is much more diverse than previously appreciated and this gene regulatory function of ADARs is most likely to be of high biological importance beyond the best-studied editing function. This non-editing side of ADARs opens another door to target cancer.


Subject(s)
Adenosine Deaminase/metabolism , Gene Regulatory Networks/physiology , Neoplasms/genetics , RNA Editing , RNA, Double-Stranded/metabolism , RNA-Binding Proteins/metabolism , 3' Untranslated Regions/genetics , Adenosine/metabolism , Animals , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , Inosine/metabolism , Neoplasms/metabolism , Tumor Cells, Cultured
6.
Acta Pharmacol Sin ; 39(2): 184-194, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28816235

ABSTRACT

The RasGAP SH3 domain-binding proteins (G3BPs) are a family of RNA-binding proteins that can co-ordinate signal transduction and post-transcriptional gene regulation. G3BPs have been shown to be involved in mediating a great diversity of cellular processes such as cell survival, growth, proliferation and apoptosis. But the potential roles of G3BPs in the pathogenesis and progression of cardiovascular diseases remain to be clarified. In the present study, we provide the first evidence that suggests the participation of G3BP2 in cardiac hypertrophy. In cultured neonatal rat cardiomyocytes (NRCMs), treatment with isoproterenol (ISO, 0.1-100 µmol/L) significantly elevated the mRNA and protein levels of G3BP2. Similar results were observed in the hearts of rats subjected to 7D-injection of ISO, accompanied by obvious heart hypertrophy and elevated the expression of hypertrophy marker genes ANF, BNP and ß-MHC in heart tissues. Overexpression of G3BP2 in NRCMs led to hypertrophic responses evidenced by increased cellular surface area and the expression of hypertrophy marker genes, whereas knockdown of G3BP2 significantly attenuated ISO-induced hypertrophy of NRCMs. We further showed that G3BP2 directly interacted with IκBα and promoted the aggregation of the NF-κB subunit p65 in the nucleus and increased NF-κB-dependent transcriptional activity. NF-κB inhibition with PDTC (50 µmol/L) or p65 knockdown significantly decreased the hypertrophic responses in NRCMs induced by ISO or G3BP2 overexpression. These results give new insight into the functions of G3BP2 and may help further elucidate the molecular mechanisms underlying cardiac hypertrophy.


Subject(s)
Cardiomegaly/metabolism , GTP-Binding Protein Regulators/metabolism , Myocytes, Cardiac/metabolism , NF-kappa B/metabolism , RNA-Binding Proteins/metabolism , Animals , Cardiomegaly/chemically induced , Cardiomegaly/pathology , Cell Nucleus/metabolism , Disease Models, Animal , GTP-Binding Protein Regulators/genetics , Gene Knockdown Techniques , Isoproterenol , Male , Myocytes, Cardiac/pathology , NF-KappaB Inhibitor alpha/metabolism , NF-kappa B/antagonists & inhibitors , Pyrrolidines/pharmacology , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , Rats, Sprague-Dawley , Signal Transduction/drug effects , Thiocarbamates/pharmacology , Transcription Factor RelA/metabolism
7.
Biochim Biophys Acta ; 1863(12): 3027-3039, 2016 12.
Article in English | MEDLINE | ID: mdl-27686254

ABSTRACT

The Forkhead box-containing protein, O subfamily 3 (FoxO3) transcription factor negatively regulates myocardial hypertrophy, and its transcriptional activity is finely conditioned by diverse posttranslational modifications, such as phosphorylation, acetylation, ubiquitination, methylation and glycosylation. Here, we introduce a novel modification of the FoxO3 protein in cardiomyocytes: poly(ADP-ribosyl)ation (PARylation) mediated by poly(ADP-ribose) polymerase-1 (PARP1). This process catalyzes the NAD+-dependent synthesis of polymers of ADP-ribose (PAR) and their subsequent attachment to target proteins by PARPs. Primary-cultured neonatal rat cardiomyocytes were incubated with isoproterenol (ISO) to induce hypertrophy, or were infected with recombinant adenovirus vectors harboring PARP1 cDNA (Ad-PARP1). Sprague-Dawley (SD) rats were treated with ISO to induce cardiac hypertrophy, or were injected with Ad-PARP1 into the anterior and posterior left ventricular walls. Cardiomyocyte surface area, the mRNA expression of hypertrophic biomarkers, echocardiography, morphometry of the hearts were measured. The PARP1 activity was tested by cellular PAR levels. Interactions of PARP1 and FoxO3 were investigated by co-immunoprecipitation and immunofluorescence technique. PARylation of FoxO3 mediated by PARP1 facilitated its phosphorylation at the T32, S252 and S314 sites, triggered its nucleus export and suppressed its transcriptional activity and target genes expression, ultimately inducing cardiac hypertrophy. Additionally, PARP1 silencing or specific inhibition by 3-Aminobenzamide (3AB) and veliparib (ABT-888) alleviated the inhibition of FoxO3 activity by ISO, thus suppressing ISO-induced cardiac hypertrophy. Our data provide the first evidence that PARP1 exacerbates cardiac hypertrophy by PARylation of FoxO3.


Subject(s)
Cardiomegaly/metabolism , Forkhead Box Protein O3/metabolism , Myocytes, Cardiac/metabolism , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly Adenosine Diphosphate Ribose/metabolism , Protein Processing, Post-Translational , Adenoviridae/genetics , Adenoviridae/metabolism , Animals , Animals, Newborn , Benzamides/pharmacology , Benzimidazoles/pharmacology , Cardiomegaly/chemically induced , Cardiomegaly/genetics , Cardiomegaly/pathology , Echocardiography , Forkhead Box Protein O3/genetics , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Isoproterenol , Male , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Poly (ADP-Ribose) Polymerase-1/genetics , Primary Cell Culture , Rats , Rats, Sprague-Dawley , Signal Transduction , Transcription, Genetic
8.
Gastroenterology ; 151(4): 637-650.e10, 2016 10.
Article in English | MEDLINE | ID: mdl-27373511

ABSTRACT

BACKGROUD & AIMS: Gastric cancer (GC) is the third leading cause of global cancer mortality. Adenosine-to-inosine RNA editing is a recently described novel epigenetic mechanism involving sequence alterations at the RNA but not DNA level, primarily mediated by ADAR (adenosine deaminase that act on RNA) enzymes. Emerging evidence suggests a role for RNA editing and ADARs in cancer, however, the relationship between RNA editing and GC development and progression remains unknown. METHODS: In this study, we leveraged on the next-generation sequencing transcriptomics to demarcate the GC RNA editing landscape and the role of ADARs in this deadly malignancy. RESULTS: Relative to normal gastric tissues, almost all GCs displayed a clear RNA misediting phenotype with ADAR1/2 dysregulation arising from the genomic gain and loss of the ADAR1 and ADAR2 gene in primary GCs, respectively. Clinically, patients with GCs exhibiting ADAR1/2 imbalance demonstrated extremely poor prognoses in multiple independent cohorts. Functionally, we demonstrate in vitro and in vivo that ADAR-mediated RNA misediting is closely associated with GC pathogenesis, with ADAR1 and ADAR2 playing reciprocal oncogenic and tumor suppressive roles through their catalytic deaminase domains, respectively. Using an exemplary target gene PODXL (podocalyxin-like), we demonstrate that the ADAR2-regulated recoding editing at codon 241 (His to Arg) confers a loss-of-function phenotype that neutralizes the tumorigenic ability of the unedited PODXL. CONCLUSIONS: Our study highlights a major role for RNA editing in GC disease and progression, an observation potentially missed by previous next-generation sequencing analyses of GC focused on DNA alterations alone. Our findings also suggest new GC therapeutic opportunities through ADAR1 enzymatic inhibition or the potential restoration of ADAR2 activity.


Subject(s)
Adenosine Deaminase/genetics , RNA Editing , RNA-Binding Proteins/genetics , Stomach Neoplasms/genetics , Codon , Disease Progression , Epigenesis, Genetic , Female , Humans , Male , Middle Aged , Prognosis , Sequence Analysis, RNA , Sialoglycoproteins/genetics , Stomach Neoplasms/pathology , Transcriptome
9.
Biotechnol Lett ; 37(10): 1937-43, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26063620

ABSTRACT

OBJECTIVE: The effect of epicatechin-3-gallate (ECG), a polyphenol that is present in green tea, on doxorubicin (DOX) cytotoxicity in H9C2 cardiomyocytes and its underlying mechanisms were investigated. RESULTS: Pretreatment with ECG (20 and 30 µM) significantly increased DOX-induced apoptosis to 16-18% in H9C2 cardiomyocytes. The Bax/Bcl-2 ratio increased significantly after 1 h pretreatment with ECG. ECG also enhanced the phosphorylation of AMP-activated protein kinase (AMPK) which was induced by DOX in a dose-dependent manner. CONCLUSION: Pretreatment with ECG sensitized H9C2 cells to DOX-mediated apoptosis through modulation of proteins involved in apoptosis and AMPK.


Subject(s)
Antibiotics, Antineoplastic/metabolism , Apoptosis/drug effects , Catechin/analogs & derivatives , Doxorubicin/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/physiology , Animals , Catechin/metabolism , Cell Line , Drug Interactions , Rats
10.
Biotechnol Lett ; 37(12): 2371-7, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26272391

ABSTRACT

OBJECTIVE: Tea is the most consumed beverage in the world. (-)-Epigallocatechin-3-gallate (EGCG), a major green tea polyphenol, is effective in the prevention of several chronic diseases, and is marketed as part of many dietary supplements. We have now examined the myocardiotoxic effect of high doses of EGCG in mice. RESULTS: EGCG (500 and 1000 mg/kg·d) induced cardiac collagen synthesis and fibrosis-related protein expression, such as connective tissue growth factor (CTGF) and fibronectin (FN) in mice. Moreover, EGCG decreased the protein expression of p-AMPK and increased the levels of p-p70S6 K and p-S6. CONCLUSION: This is the first evidence that high oral doses of EGCG could induce cardiac fibrosis, and shed new light on the understanding of EGCG-mediated myocardiotoxicity.


Subject(s)
Catechin/analogs & derivatives , Fibrosis/chemically induced , Fibrosis/pathology , Myocardium/pathology , Tea/chemistry , Administration, Oral , Animals , Catechin/administration & dosage , Catechin/isolation & purification , Catechin/toxicity , Collagen/analysis , Connective Tissue Growth Factor/analysis , Fibronectins/analysis , Mice
11.
Front Immunol ; 14: 1177580, 2023.
Article in English | MEDLINE | ID: mdl-37283769

ABSTRACT

Background: Recent observational studies and meta-analyses have shown that vitamin C reduces cancer incidence and mortality, but the underlying mechanisms remain unclear. We conducted a comprehensive pan-cancer analysis and biological validation in clinical samples and animal tumor xenografts to understand its prognostic value and association with immune characteristics in various cancers. Methods: We used the Cancer Genome Atlas gene expression data involving 5769 patients and 20 cancer types. Vitamin C index (VCI) was calculated using the expression of 11 genes known to genetically predict vitamin C levels, which were classified into high and low subgroups. The correlation between VCI and patient overall survival (OS), tumor mutational burden (TMB), microsatellite instability (MSI), and immune microenvironment was evaluated, using Kaplan-Meier analysis method and ESTIMATE (https://bioinformatics.mdanderson.org/estimate/). Clinical samples of breast cancer and normal tissues were used to validate the expression of VCI-related genes, and animal experiments were conducted to test the impact of vitamin C on colon cancer growth and immune cell infiltration. Results: Significant changes in expression of VCI-predicted genes were observed in multiple cancer types, especially in breast cancer. There was a correlation of VCI with prognosis in all samples (adjusted hazard ratio [AHR] = 0.87; 95% confidence interval [CI] = 0.78-0.98; P = 0.02). The specific cancer types that exhibited significant correlation between VCI and OS included breast cancer (AHR = 0.14; 95% CI = 0.05-0.40; P < 0.01), head and neck squamous cell carcinoma (AHR = 0.20; 95% CI = 0.07-0.59; P < 0.01), kidney clear cell carcinoma (AHR = 0.66; 95% CI = 0.48-0.92; P = 0.01), and rectum adenocarcinoma (AHR = 0.01; 95% CI = 0.001-0.38; P = 0.02). Interestingly, VCI was correlated with altered immunotypes and associated with TMB and MSI negatively in colon and rectal adenocarcinoma (P < 0.001) but positively in lung squamous cell carcinoma (P < 0.05). In vivo study using mice bearing colon cancer xenografts demonstrated that vitamin C could inhibit tumor growth with significant impact on immune cell infiltration. Conclusion: VCI is significantly correlated with OS and immunotypes in multiple cancers, and vitamin C might have therapeutic potential in colon cancer.


Subject(s)
Breast Neoplasms , Carcinoma, Renal Cell , Colonic Neoplasms , Kidney Neoplasms , Lung Neoplasms , Rectal Neoplasms , Humans , Animals , Mice , Female , Ascorbic Acid , Vitamins , Tumor Microenvironment/genetics
12.
Acta Pharm Sin B ; 12(5): 2374-2390, 2022 May.
Article in English | MEDLINE | ID: mdl-35646533

ABSTRACT

Pathological cardiac hypertrophy serves as a significant foundation for cardiac dysfunction and heart failure. Recently, growing evidence has revealed that microRNAs (miRNAs) play multiple roles in biological processes and participate in cardiovascular diseases. In the present research, we investigate the impact of miRNA-34c-5p on cardiac hypertrophy and the mechanism involved. The expression of miR-34c-5p was proved to be elevated in heart tissues from isoprenaline (ISO)-infused mice. ISO also promoted miR-34c-5p level in primary cultures of neonatal rat cardiomyocytes (NRCMs). Transfection with miR-34c-5p mimic enhanced cell surface area and expression levels of foetal-type genes atrial natriuretic factor (Anf) and ß-myosin heavy chain (ß-Mhc) in NRCMs. In contrast, treatment with miR-34c-5p inhibitor attenuated ISO-induced hypertrophic responses. Enforced expression of miR-34c-5p by tail intravenous injection of its agomir led to cardiac dysfunction and hypertrophy in mice, whereas inhibiting miR-34c-5p by specific antagomir could protect the animals against ISO-triggered hypertrophic abnormalities. Mechanistically, miR-34c-5p suppressed autophagic flux in cardiomyocytes, which contributed to the development of hypertrophy. Furthermore, the autophagy-related gene 4B (ATG4B) was identified as a direct target of miR-34c-5p, and miR-34c-5p was certified to interact with 3' untranslated region of Atg4b mRNA by dual-luciferase reporter assay. miR-34c-5p reduced the expression of ATG4B, thereby resulting in decreased autophagy activity and induction of hypertrophy. Inhibition of miR-34c-5p abolished the detrimental effects of ISO by restoring ATG4B and increasing autophagy. In conclusion, our findings illuminate that miR-34c-5p participates in ISO-induced cardiac hypertrophy, at least partly through suppressing ATG4B and autophagy. It suggests that regulation of miR-34c-5p may offer a new way for handling hypertrophy-related cardiac dysfunction.

13.
Sci Rep ; 10(1): 3874, 2020 Feb 26.
Article in English | MEDLINE | ID: mdl-32099039

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

14.
Sci Adv ; 6(25): eaba5136, 2020 06.
Article in English | MEDLINE | ID: mdl-32596459

ABSTRACT

RNA editing introduces nucleotide changes in RNA sequences. Recent studies have reported that aberrant A-to-I RNA editing profiles are implicated in cancers. Albeit changes in expression and activity of ADAR genes are thought to have been responsible for the dysregulated RNA editome in diseases, they are not always correlated, indicating the involvement of secondary regulators. Here, we uncover DAP3 as a potent repressor of editing and a strong oncogene in cancer. DAP3 mainly interacts with the deaminase domain of ADAR2 and represses editing via disrupting association of ADAR2 with its target transcripts. PDZD7, an exemplary DAP3-repressed editing target, undergoes a protein recoding editing at stop codon [Stop →Trp (W)]. Because of editing suppression by DAP3, the unedited PDZD7WT, which is more tumorigenic than edited PDZD7Stop518W, is accumulated in tumors. In sum, cancer cells may acquire malignant properties for their survival advantage through suppressing RNA editome by DAP3.


Subject(s)
Adenosine , Apoptosis Regulatory Proteins , Neoplasms , RNA-Binding Proteins , Adenosine/genetics , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Apoptosis Regulatory Proteins/metabolism , Humans , Inosine/genetics , Inosine/metabolism , Neoplasms/genetics , Neoplasms/metabolism , RNA/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
15.
Nat Commun ; 11(1): 799, 2020 02 07.
Article in English | MEDLINE | ID: mdl-32034135

ABSTRACT

RNA editing and splicing are the two major processes that dynamically regulate human transcriptome diversity. Despite growing evidence of crosstalk between RNA editing enzymes (mainly ADAR1) and splicing machineries, detailed mechanistic explanations and their biological importance in diseases, such as cancer are still lacking. Herein, we identify approximately a hundred high-confidence splicing events altered by ADAR1 and/or ADAR2, and ADAR1 or ADAR2 protein can regulate cassette exons in both directions. We unravel a binding tendency of ADARs to dsRNAs that involves GA-rich sequences for editing and splicing regulation. ADAR1 edits an intronic splicing silencer, leading to recruitment of SRSF7 and repression of exon inclusion. We also present a mechanism through which ADAR2 binds to dsRNA formed between GA-rich sequences and polypyrimidine (Py)-tract and precludes access of U2AF65 to 3' splice site. Furthermore, we find these ADARs-regulated splicing changes per se influence tumorigenesis, not merely byproducts of ADARs editing and binding.


Subject(s)
Adenosine Deaminase/metabolism , Neoplasms/genetics , RNA Precursors/genetics , RNA-Binding Proteins/metabolism , Adenosine Deaminase/genetics , Alternative Splicing , Animals , Carrier Proteins/genetics , Cell Line, Tumor , Exons , Gene Expression Regulation, Neoplastic , Humans , Membrane Proteins/genetics , Mice, Inbred NOD , Nonsense Mediated mRNA Decay , RNA Editing , RNA Splice Sites , RNA Splicing , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , RNA, Messenger/genetics , RNA-Binding Proteins/genetics , Serine-Arginine Splicing Factors/genetics , Splicing Factor U2AF/genetics
16.
Sci Rep ; 9(1): 8091, 2019 05 30.
Article in English | MEDLINE | ID: mdl-31147619

ABSTRACT

cDNA library preparation is important for many high-throughput sequencing applications, such as RNA G-quadruplex structure sequencing (rG4-seq). A systematic evaluation of the procedures of the experimental pipeline, however, is lacking. Herein, we perform a comprehensive assessment of the 5 key experimental steps involved in the cDNA library preparation of rG4-seq, and identify better reaction conditions and/or enzymes to carry out each of these key steps. Notably, we apply the improved methods to fragmented cellular RNA, and show reduced RNA input requirement, lower transcript abundance variations between biological replicates, as well as lower transcript coverage bias when compared to prior arts. In addition, the time to perform these steps is substantially reduced to hours. Our method and results can be directly applied in protocols that require cDNA library preparation, and provide insights to the further development of simple and efficient cDNA library preparation for different biological applications.


Subject(s)
G-Quadruplexes , Gene Library , High-Throughput Nucleotide Sequencing/methods , RNA, Messenger/genetics , Sequence Analysis, RNA/methods , HeLa Cells , Humans , RNA, Messenger/chemistry
17.
Naunyn Schmiedebergs Arch Pharmacol ; 391(12): 1373-1385, 2018 12.
Article in English | MEDLINE | ID: mdl-30132020

ABSTRACT

Protocatechuic aldehyde (PCA) is a natural compound found in the Chinese herb Salvia miltiorrhiza. It has been shown to possess multiple biological activities and to protect the cardiovascular system against oxidative stress, inflammation, and atherosclerosis. However, the potential effects of PCA on cardiac hypertrophy remain to be investigated. In this study, we showed that isoproterenol treatment (ISO, 10 µM for 24 h) induced significant hypertrophy in cultured neonatal rat cardiomyocytes, as manifested by enlargement of cell surface area (1.74-fold greater than that of the control, p < 0.05) and upregulation of hypertrophic gene markers (2.44- to 2.75-fold increase in ANF and ß-MHC protein expression, p < 0.05). These ISO-induced hypertrophic responses were attenuated by PCA (50-200 µM, p < 0.05). Furthermore, intragastric administration of PCA (10-100 mg/kg/day) ameliorated cardiac hypertrophy in ISO-treated rats (1.5 mg/kg/day, s.c., for 7 days). PCA inhibited the abnormal changes in echocardiographic parameters and suppressed ISO-induced increase in cardiomyocyte cross-sectional area and collagen content (p < 0.05). It also ameliorated ISO-mediated elevation of HW/BW, LVW/BW, and HW/TL ratios (p < 0.05). Mechanistically, ISO facilitated JAK2 and STAT3 phosphorylation, increased STAT3 nuclear translocation, and enhanced STAT3 transcriptional activity. All these changes were attenuated by PCA. Taken together, these findings showed that PCA could protect against cardiac hypertrophy induced by ISO possibly via inhibition of the JAK2/STAT3 signaling pathway, suggesting the potential of PCA as a therapeutic candidate for hypertrophy-associated heart diseases.


Subject(s)
Benzaldehydes/pharmacology , Benzaldehydes/therapeutic use , Cardiomegaly/drug therapy , Cardiotonic Agents/pharmacology , Cardiotonic Agents/therapeutic use , Catechols/pharmacology , Catechols/therapeutic use , Janus Kinase 2/antagonists & inhibitors , STAT3 Transcription Factor/antagonists & inhibitors , Animals , Cardiomegaly/chemically induced , Cardiomegaly/metabolism , Cardiomegaly/pathology , Cells, Cultured , Isoproterenol , Janus Kinase 2/metabolism , Male , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Rats, Sprague-Dawley , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects
18.
Mol Cell Endocrinol ; 460: 1-13, 2018 01 15.
Article in English | MEDLINE | ID: mdl-28579116

ABSTRACT

Silent mating type information regulation 2 homolog 3 (SIRT3) is a major protective mediator that ameliorates oxidative stress and mitochondrial dysfunction, which are associated with the pathogenesis of epithelial-mesenchymal transition (EMT). The present study was aimed to investigate the potential role of SIRT3 in renal tubular EMT both in vitro and in vivo. Firstly, we showed that the expression of SIRT3 was repressed in angiotensin II-induced EMT. SIRT3 deficiency triggered EMT response, while over-expression of SIRT3 attenuated EMT response. In addition, over-expression of SIRT3 repressed AngⅡ-induced excessive production of mitochondrial superoxide, as well as mitochondrial dysfunction evidenced by the maintenance of mitochondrial number and morphology, and the stabilization of mitochondrial membrane potential. In conclusion, these findings identify a protective role of SIRT3 against angiotensin II-induced EMT in the kidney, and suggest SIRT3 upregulation is a potential therapeutic strategy for the treatment of renal tubulointerstitial fibrosis.


Subject(s)
Epithelial-Mesenchymal Transition , Kidney Tubules/pathology , Mitochondria/pathology , Oxidative Stress , Sirtuin 3/metabolism , Angiotensin II , Animals , Blood Pressure , Cell Line , Cytoprotection , Down-Regulation , Kidney Tubules/ultrastructure , Membrane Potential, Mitochondrial , Mice, Knockout , Mitochondria/metabolism , Mitochondria/ultrastructure , Oxidative Stress/drug effects , Rats , Sirtuin 3/deficiency , Superoxide Dismutase/metabolism , Superoxides/metabolism , Systole
19.
Transl Res ; 172: 96-112.e6, 2016 06.
Article in English | MEDLINE | ID: mdl-27016702

ABSTRACT

Reduction in autophagy has been reported to contribute to the pathogenesis of cardiac hypertrophy. However, the molecular pathways leading to impaired autophagy at the presence of hypertrophic stimuli remain to be elucidated. The present study aimed to investigate the role of sirtuin 6 (SIRT6), a sirtuin family member, in regulating cardiomyocyte autophagy, and its implication in prevention of cardiac hypertrophy. Primary neonatal rat cardiomyocytes (NRCMs) or Sprague-Dawley (SD) rats were submitted to isoproterenol (ISO) treatment, and then the hypertrophic responses and changes in autophagy activity were measured. The influence of SIRT6 on autophagy was observed in cultured NRCMs with gain- and loss-of-function approaches to regulate SIRT6 expression, and further confirmed in vivo by intramyocardial delivery of an adenovirus vector encoding SIRT6 cDNA. In addition, the involvement of SIRT6-mediated autophagy in attenuation of cardiomyocyte hypertrophy induced by ISO was determined basing on genetic or pharmaceutical disruption of autophagy, and the underlying mechanism was preliminarily explored. ISO-caused cardiac hypertrophy accompanying with a significant decrease in autophagy activity. SIRT6 overexpression enhanced autophagy in NRCMs and in rat hearts, whereas knockdown of SIRT6 by RNA interference led to suppression of cardiomyocyte autophagy. Furthermore, the protective effect of SIRT6 against ISO-stimulated hypertrophy was associated with induction of autophagy. SIRT6 promoted nuclear retention of forkhead box O3 transcription factor possibly via attenuating Akt signaling, which was responsible for autophagy activation. Our findings revealed that SIRT6 positively regulates autophagy in cardiomyocytes, which may help to ameliorate ISO-induced cardiac hypertrophy.


Subject(s)
Autophagy , Cardiomegaly/metabolism , Cardiomegaly/pathology , Sirtuins/metabolism , Animals , Animals, Newborn , Cardiomegaly/prevention & control , Cells, Cultured , Forkhead Box Protein O3/metabolism , Isoproterenol , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/ultrastructure , Proto-Oncogene Proteins c-akt/metabolism , Rats, Sprague-Dawley , Signal Transduction , Vacuoles/metabolism , Vacuoles/ultrastructure
20.
Biosci Rep ; 35(2)2015 Mar 31.
Article in English | MEDLINE | ID: mdl-25662729

ABSTRACT

Adenosine-to-inosine (A-to-I) RNA editing, the most prevalent mode of transcript modification in higher eukaryotes, is catalysed by the adenosine deaminases acting on RNA (ADARs). A-to-I editing imposes an additional layer of gene regulation as it dictates various aspects of RNA metabolism, including RNA folding, processing, localization and degradation. Furthermore, editing events in exonic regions contribute to proteome diversity as translational machinery decodes inosine as guanosine. Although it has been demonstrated that dysregulated A-to-I editing contributes to various diseases, the precise regulatory mechanisms governing this critical cellular process have yet to be fully elucidated. However, integration of previous studies revealed that regulation of A-to-I editing is multifaceted, weaving an intricate network of auto- and transregulations, including the involvement of virus-originated factors like adenovirus-associated RNA. Taken together, it is apparent that tipping of any regulatory components will have profound effects on A-to-I editing, which in turn contributes to both normal and aberrant physiological conditions. A complete understanding of this intricate regulatory network may ultimately be translated into new therapeutic strategies against diseases driven by perturbed RNA editing events. Herein, we review the current state of knowledge on the regulatory mechanisms governing A-to-I editing and propose the role of other co-factors that may be involved in this complex regulatory process.


Subject(s)
Adenosine Deaminase/metabolism , Adenosine/metabolism , Inosine/metabolism , RNA Editing/physiology , RNA-Binding Proteins/metabolism , Adenosine/genetics , Adenosine Deaminase/genetics , Animals , Humans , Inosine/genetics , RNA-Binding Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL