Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Hepatology ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38986003

ABSTRACT

BACKGROUND AND AIMS: Solute Carrier Family 10 Member 5 (SLC10A5) is a member of SLC10, comprising transporters of bile acids, steroidal hormones, and other substrates, but its function remains unclear. The aim of the current investigation was to clarify its function in the metabolism of bile acid and hypercholanemia. APPROACH AND RESULTS: Whole-exome sequencing and Sanger sequencing were used to identify and confirm the variant in the subjects of hypercholanemia. CRISPR/Cas9-mediated genome engineering was used to establish the knockout and point mutation mice. Primary mouse hepatocytes were isolated, and cell lines were cultured. SLC10A5 was silenced by siRNA and overexpressed by wild-type and mutant plasmids. The fluorescent bile acid derivative was used for the bile acid uptake assay. Bile acids were assessed with ultra-performance liquid chromatography tandem mass spectrometry. A heterozygous variant SLC10A5 : c.994_995del (p.D332X) was identified in subjects with elevated total bile acid or altered bile acid profiles. Bile acids were increased in the serum and liver of knockout and point mutation mice. The expressions of FXR and SHP, regulators involved in the negative feedback of bile acid synthesis, were downregulated, while the bile acid synthesis genes CYP7A1 and CYP8B1 were upregulated in both gene-edited mice. Both the wild and mutant SLC10A5 proteins were localized on the plasma membrane. Knockdown, knockout, or targeted mutation of SLC10A5 led to the inhibition of bile acid uptake by cell lines and primary mouse hepatocytes. CONCLUSION: SLC10A5 is involved in the uptake of bile acid, and its deficiency causes hypercholanemia.

2.
Environ Int ; 186: 108582, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38513556

ABSTRACT

Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are synthetic chemicals, encompassing compounds like perfluorooctane sulfonate (PFOS), which have widespread applications across various industries, including food packaging and firefighting. In recent years, China has increasingly employed 6:2 Cl-PFESA as an alternative to PFOS. Although the association between PFAS exposure and hepatocellular carcinoma (HCC) has been demonstrated, the underlying mechanisms that promote HCC proliferation are uncleared. Therefore, we aimed to investigate the effects and differences of PFOS and 6:2 Cl-PFESA on HCC proliferation through in vivo and in vitro tumor models. Our results reveal that both PFOS and 6:2 Cl-PFESA significantly contribute to HCC proliferation in vitro and in vivo. Exposure led to reduced population doubling times, enlarged cell colony sizes, enhanced DNA synthesis efficiency, and a higher proportion of cells undergoing mitosis. Furthermore, both PFOS and 6:2 Cl-PFES) have been shown to activate the PI3K/AKT/mTOR signaling pathway and inhibit necroptosis. This action consequently enhances the proliferation of HCC cells. Our phenotypic assay findings suggest that the tumorigenic potential of 6:2 Cl-PFESA surpasses that of PFOS; in a subcutaneous tumor model using nude mice, the mean tumor weight for the 6:2 Cl-PFESA-treated cohort was 2.33 times that observed in the PFOS cohort (p < 0.01). Despite 6:2 Cl-PFESA being considered a safer substitute for PFOS, the pronounced effects of this chemical on HCC cell growth warrant a thorough assessment of hepatotoxicity risks linked to its usage.


Subject(s)
Alkanesulfonic Acids , Carcinoma, Hepatocellular , Cell Proliferation , Fluorocarbons , Liver Neoplasms , Carcinoma, Hepatocellular/chemically induced , Carcinoma, Hepatocellular/pathology , Humans , Liver Neoplasms/pathology , Liver Neoplasms/chemically induced , Cell Proliferation/drug effects , Animals , Mice , Cell Line, Tumor , Signal Transduction/drug effects , China
3.
J Hazard Mater ; 474: 134790, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38850938

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC)/pancreatic cancer, is a highly aggressive malignancy with poor prognosis. Gemcitabine-based chemotherapy remains the cornerstone of PDAC treatment. Nonetheless, the development of resistance to gemcitabine among patients is a major factor contributing to unfavorable prognostic outcomes. The resistance exhibited by tumors is modulated by a constellation of factors such as genetic mutations, tumor microenvironment transforms, environmental contaminants exposure. Currently, comprehension of the relationship between environmental pollutants and tumor drug resistance remains inadequate. Our study found that PFOS/6:2 Cl-PFESA exposure increases resistance to gemcitabine in PDAC. Subsequent in vivo trials confirmed that exposure to PFOS/6:2 Cl-PFESA reduces gemcitabine's efficacy in suppressing PDAC, with the inhibition rate decreasing from 79.5 % to 56.7 %/38.7 %, respectively. Integrative multi-omics sequencing and molecular biology analyses have identified the upregulation of ribonucleotide reductase catalytic subunit M1 (RRM1) as a critical factor in gemcitabine resistance. Subsequent research has demonstrated that exposure to PFOS and 6:2 Cl-PFESA results in the upregulation of the RRM1 pathway, consequently enhancing chemotherapy resistance. Remarkably, the influence exerted by 6:2 Cl-PFESA exceeds that of PFOS. Despite 6:2 Cl-PFESA being regarded as a safer substitute for PFOS, its pronounced effect on chemotherapeutic resistance in PDAC necessitates a thorough evaluation of its potential risks related to gastrointestinal toxicity.


Subject(s)
Alkanesulfonic Acids , Carcinoma, Pancreatic Ductal , Deoxycytidine , Drug Resistance, Neoplasm , Fluorocarbons , Gemcitabine , Pancreatic Neoplasms , Deoxycytidine/analogs & derivatives , Deoxycytidine/therapeutic use , Pancreatic Neoplasms/drug therapy , Humans , Fluorocarbons/toxicity , Alkanesulfonic Acids/toxicity , Cell Line, Tumor , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Drug Resistance, Neoplasm/drug effects , Animals , Ribonucleoside Diphosphate Reductase , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Antimetabolites, Antineoplastic/therapeutic use , Female , Mice , Male , Mice, Nude
4.
Expert Rev Mol Diagn ; 24(5): 467-472, 2024 May.
Article in English | MEDLINE | ID: mdl-38526221

ABSTRACT

BACKGROUND: Noninvasive prenatal screening (NIPS) has shown good performance in screening common aneuploidies. However, its performance in detecting fetal sex chromosome aneuploidies (SCAs) needs to be evaluated in a large cohort. RESEARCH DESIGN AND METHODS: In this retrospective observation, a total of 116,862 women underwent NIPS based on DNA nanoball sequencing from 2015 to 2022. SCAs were diagnosed based on karyotyping or chromosomal microarray analysis (CMA). Among them, 2,084 singleton pregnancies received karyotyping and/or CMA. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of NIPS for fetal SCAs were evaluated. RESULTS: The sensitivity was 97.7% (95%CI, 87.7-99.9), 87.3% (95% CI, 76.5-94.4), 96.1% (95%CI, 86.5-99.5), and 95.7% (95% CI, 78.1-99.9), the PPV was 25.8% (95%CI, 19.2-33.2), 80.9% (95%CI, 69.5-89.4), 79.0% (95%CI, 66.8-88.3), and 53.7% (95%CI, 37.4-69.3) for 45,X, 47,XXY, 47,XXX, and 47,XYY, respectively. The specificity was 94.1% (95%CI, 93.0-95.1) for 45,X, and more than 99.0% for sex chromosome trisomy (SCT). The NPV was over 99.0% for all. CONCLUSIONS: NIPS screening for fetal SCAs has high sensitivity, specificity and NPV. The PPV of SCAs was moderate, but that of 45,X was lower than that of SCTs. Invasive prenatal diagnosis should be recommended for high-risk patients.


Subject(s)
Aneuploidy , Noninvasive Prenatal Testing , Humans , Female , Pregnancy , Noninvasive Prenatal Testing/methods , Noninvasive Prenatal Testing/standards , Adult , Retrospective Studies , Sensitivity and Specificity , Sex Chromosome Aberrations , Karyotyping/methods , Sex Chromosomes/genetics , Prenatal Diagnosis/methods
5.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 42(2): 262-267, 2024 Apr 01.
Article in English, Zh | MEDLINE | ID: mdl-38597087

ABSTRACT

Robotic surgery is known as the "third technological revolution" in the field of surgery, and is an important milestone in the development of modern surgery. However, our country's innovative surgical robot industry is still in its early stages, and it is only being utilized in certain surgical fields. To explore the effectiveness of the application of domestic surgical robot in oral and maxillofacial surgery, the author successfully completed a case of benign parotid tumor resection with the assistance of a domestic autonomous robot. The operation was successful, facial nerve function was preserved, and postoperative wound healing was good.


Subject(s)
Parotid Neoplasms , Robotic Surgical Procedures , Humans , Parotid Neoplasms/surgery , Parotid Neoplasms/pathology , Parotid Gland/surgery , Parotid Gland/pathology , China
6.
ACS Appl Mater Interfaces ; 16(7): 9012-9019, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38331712

ABSTRACT

Perovskite LEDs (PeLEDs) have emerged as a next-generation light-emitting technology. Recent breakthroughs were made in achieving highly stable near-infrared and green PeLEDs. However, the operational lifetimes (T50) of visible PeLEDs under high current densities (>10 mA cm-2) remain unsatisfactory (normally <100 h), limiting the possibilities in solid-state lighting and AR/VR applications. This problem becomes more pronounced for mixed-halide (e.g., red and blue) perovskite emitters in which critical challenges such as halide segregation and spectral instability are present. Here, we demonstrate bright and stable red PeLEDs based on mixed-halide perovskites, showing measured T50 lifetimes of up to ∼357 h at currents of ≥25 mA cm-2, a record for the operational stability of visible PeLEDs under high current densities. The devices produce intense and stable emission with a maximum luminance of 28,870 cd m-2 (radiance: 1584 W sr-1 m-2), which is record-high for red PeLEDs. Key to this demonstration is the introduction of sulfonamide, a dipolar molecular stabilizer that effectively interacts with the ionic species in the perovskite emitters. It suppresses halide segregation and migration into the charge-transport layers, resulting in enhanced stability and brightness of the mixed-halide PeLEDs. These results represent a substantial step toward bright and stable PeLEDs for emerging applications.

7.
Int J Oral Sci ; 16(1): 51, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987554

ABSTRACT

Traditional open head and neck surgery often leaves permanent scars, significantly affecting appearance. The emergence of surgical robots has introduced a new era for minimally invasive surgery. However, the complex anatomy of the head and neck region, particularly the oral and maxillofacial areas, combined with the high costs associated with established systems such as the da Vinci, has limited the widespread adoption of surgical robots in this field. Recently, surgical robotic platform in China has developed rapidly, exemplified by the promise shown by the KangDuo Surgical Robot (KD-SR). Although the KD-SR has achieved some results comparable to the da Vinci surgical robot in urology and colorectal surgery, its performance in complex head and neck regions remains untested. This study evaluated the feasibility, effectiveness, and safety of the newly developed KD-SR-01, comparing it with standard endoscopic systems in head and neck procedures on porcine models. We performed parotidectomy, submandibular gland resection, and neck dissection, collected baseline characteristics, perioperative data, and specifically assessed cognitive workload using the NASA-TLX. None of the robotic procedures were converted to endoscopic or open surgery. The results showed no significant difference in operation time between the two groups (P = 0.126), better intraoperative bleeding control (P = 0.001), and a significant reduction in cognitive workload (P < 0.001) in the robotic group. In conclusion, the KD-SR-01 is feasible, effective, and safe for head and neck surgery. Further investigation through well-designed clinical trials with long-term follow-up is necessary to establish the full potential of this emerging robotic platform.


Subject(s)
Robotic Surgical Procedures , Animals , Swine , Robotic Surgical Procedures/instrumentation , Models, Animal , Submandibular Gland/surgery , Feasibility Studies , Neck Dissection/instrumentation , Oral Surgical Procedures/instrumentation , Oral Surgical Procedures/methods , Parotid Gland/surgery
SELECTION OF CITATIONS
SEARCH DETAIL