Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Small ; 18(40): e2202912, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36058645

ABSTRACT

Development of efficient surface passivation methods for semiconductor devices is crucial to counter the degradation in their electrical performance owing to scattering or trapping of carriers in the channels induced by molecular adsorption from the ambient environment. However, conventional dielectric deposition involves the formation of additional interfacial defects associated with broken covalent bonds, resulting in accidental electrostatic doping or enhanced hysteretic behavior. In this study, centimeter-scaled van der Waals passivation of transition metal dichalcogenides (TMDCs) is demonstrated by stacking hydrocarbon (HC) dielectrics onto MoSe2 field-effect transistors (FETs), thereby enhancing the electric performance and stability of the device, accompanied with the suppression of chemical disorder at the HC/TMDCs interface. The stacking of HC onto MoSe2 FETs enhances the carrier mobility of MoSe2 FET by over 50% at the n-branch, and a significant decrease in hysteresis, owing to the screening of molecular adsorption. The electron mobility and hysteresis of the HC/MoSe2 FETs are verified to be nearly intact compared to those of the fabricated HC/MoSe2 FETs after exposure to ambient environment for 3 months. Consequently, the proposed design can act as a model for developing advanced nanoelectronics applications based on layered materials for mass production.

2.
ACS Nano ; 17(12): 11279-11289, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37125893

ABSTRACT

Transition-metal dichalcogenides possess high carrier mobility and can be scaled to sub-nanometer dimensions, making them viable alternative to Si electronics. WSe2 is capable of hole and electron carrier transport, making it a key component in CMOS logic circuits. However, since the p-type electrical performance of the WSe2-field effect transistor (FET) is still limited, various approaches are being investigated to circumvent this issue. Here, we formed a heterostructural multilayer WSe2 channel and solution-processed aluminum-doped zinc oxide (AZO) for compositional modification of WSe2 to obtain a device with excellent electrical properties. Supplying oxygen anions from AZO to the WSe2 channel eliminated subgap states through Se-deficiency healing, resulting in improved transport capacity. Se vacancies are known to cause mobility degradation due to scattering, which is mitigated through ionic compensation. Consequently, the hole mobility can reach high values, with a maximum of approximately 100 cm2/V s. Further, the transport behavior of the oxygen-doped WSe2-FET is systematically analyzed using density functional theory simulations and photoexcited charge collection spectroscopy measurements.

3.
ACS Omega ; 7(18): 15459-15466, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35571780

ABSTRACT

Recently, an agricultural monitoring system using the Internet of Things has been developed to realize smart farming. The high performance of various sensors in agricultural monitoring systems is essential for smart farming to automatically monitor and control agricultural environmental conditions such as temperature and water level. In this study, we propose resistive water level sensors based on an AgNWs/PEDOT:PSS-g-PEGME hybrid structure to improve the already high conductivity and water stability of PEDOT:PSS. After spin-coating the AgNWs/PEDOT:PSS-g-PEGME hybrid film, a laser treatment method successfully patterns the resistive water level sensor with areas of higher resistance. When water contacts the sensor, the variation in resistance caused by the water level changes the current flow of the sensor, allowing it to be used to detect the water level. Finally, we develop a water level sensor module as a component of the agricultural monitoring system by connecting the sensor to a microcontroller for water level monitoring in real time. The proposed water level sensors may be a new solution for detecting water levels in agricultural monitoring systems.

4.
Polymers (Basel) ; 13(7)2021 Mar 30.
Article in English | MEDLINE | ID: mdl-33808061

ABSTRACT

In this study, we investigated the p-doping effects of a fluoropolymer, Cytop, on tungsten diselenides (WSe2). The hole current of the Cytop-WSe2 field-effect transistor (FET) was boosted by the C-F bonds of Cytop having a strong dipole moment, enabling increased hole accumulation. Analysis of the observed p-doping effects using atomic force microscopy (AFM) and Raman spectroscopy shed light on the doping mechanism. Moreover, Cytop reduces the electrical instability by preventing the adsorption of ambient molecules on the WSe2 surface. Annealing Cytop deposited on WSe2 eliminated the possible impurities associated with adsorbates (i.e., moisture and oxygen) that act as traps on the surface of WSe2. After thermal annealing, the Cytop-WSe2 FET afforded higher p-type conductivity and reduced hysteresis. The combination of the Cytop-WSe2 FET with annealing provides a promising method for obtaining high-performance WSe2 p-type transistors.

5.
ACS Nano ; 15(9): 15362-15370, 2021 09 28.
Article in English | MEDLINE | ID: mdl-34463475

ABSTRACT

Neuromorphic engineering, a methodology for emulating synaptic functions or neural systems, has attracted tremendous attention for achieving next-generation artificial intelligence technologies in the field of electronics and photonics. However, to emulate human visual memory, an active pixel sensor array for neuromorphic photonics has yet to be demonstrated, even though it can implement an artificial neuron array in hardware because individual pixels can act as artificial neurons. Here, we present a neuromorphic active pixel image sensor array (NAPISA) chip based on an amorphous oxide semiconductor heterostructure, emulating the human visual memory. In the 8 × 8 NAPISA chip, each pixel with a select transistor and a neuromorphic phototransistor is based on a solution-processed indium zinc oxide back channel layer and sputtered indium gallium zinc oxide front channel layer. These materials are used as a triggering layer for persistent photoconductivity and a high-performance channel layer with outstanding uniformity. The phototransistors in the pixels exhibit both photonic potentiation and depression characteristics by a constant negative and positive gate bias due to charge trapping/detrapping. The visual memory and forgetting behaviors of the NAPISA can be successfully demonstrated by using the pulsed light stencil method without any software or simulation. This study provides valuable information to other neuromorphic devices and systems for next-generation artificial intelligence technologies.


Subject(s)
Artificial Intelligence , Electronics , Humans
6.
Nat Commun ; 12(1): 3559, 2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34117235

ABSTRACT

Various large-area growth methods for two-dimensional transition metal dichalcogenides have been developed recently for future electronic and photonic applications. However, they have not yet been employed for synthesizing active pixel image sensors. Here, we report on an active pixel image sensor array with a bilayer MoS2 film prepared via a two-step large-area growth method. The active pixel of image sensor is composed of 2D MoS2 switching transistors and 2D MoS2 phototransistors. The maximum photoresponsivity (Rph) of the bilayer MoS2 phototransistors in an 8 × 8 active pixel image sensor array is statistically measured as high as 119.16 A W-1. With the aid of computational modeling, we find that the main mechanism for the high Rph of the bilayer MoS2 phototransistor is a photo-gating effect by the holes trapped at subgap states. The image-sensing characteristics of the bilayer MoS2 active pixel image sensor array are successfully investigated using light stencil projection.

7.
ACS Nano ; 14(8): 9796-9806, 2020 08 25.
Article in English | MEDLINE | ID: mdl-32628447

ABSTRACT

Sensory adaptation is an essential part of biological neural systems for sustaining human life. Using the light-induced halide phase segregation of CsPb(Br1-xIx)3 perovskite, we introduce neuromorphic phototransistors that emulate human sensory adaptation. The phototransistor based on a hybrid structure of perovskite and transition-metal dichalcogenide (TMD) emulates the sensory adaptation in response to a continuous light stimulus, similar to the neural system. The underlying mechanism for the sensory adaptation is the halide segregation of the mixed halide perovskites. The phase separation under visible-light illumination leads to the segregation of I and Br into separate iodide- and bromide-rich domains, significantly changing the photocurrent in the phototransistors. The devices are reversible upon the removal of the light stimulation, resulting in near-complete recovery of the photosensitivity before the phase segregation (sensitivity recovery of 96.65% for 5 min rest time). The proposed phototransistor based on the perovskite-TMD hybrid structure can be applied to other neuromorphic devices such as neuromorphic photonic devices, intelligent sensors, and selective light-detecting image sensors.


Subject(s)
Iodides , Molybdenum , Calcium Compounds , Humans , Oxides , Titanium
8.
Nanoscale ; 12(13): 6991-6999, 2020 Apr 07.
Article in English | MEDLINE | ID: mdl-32080697

ABSTRACT

MoSe2 is an attractive transition-metal dichalcogenide with a two-dimensional layered structure and various attractive properties. Although MoSe2 is a promising negative electrode material for electrochemical applications, further investigation of MoSe2 has been limited, mainly by the lack of MoSe2 mass-production methods. Here, we report a rapid and ultra-high-yield synthesis method of obtaining MoSe2 nanosheets with high crystallinity and large grains by ampoule-loaded chemical vapor deposition. Application of high pressure to an ampoule-type quartz tube containing MoO3 and Se powders initiated rapid reactions that produced vertically oriented MoSe2 nanosheets with grain sizes of up to ∼100 µm and yields of ∼15 mg h-1. Spectroscopy and microscopy characterizations confirmed the high crystallinity of the obtained MoSe2 nanosheets. Transistors and lithium-ion battery cells fabricated with the synthesized MoSe2 nanosheets showed good performance, thereby further indicating their high quality. The proposed simple scalable synthesis method can pave the way for diverse electrical and electrochemical applications of MoSe2.

9.
Adv Mater ; 31(23): e1807552, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30985020

ABSTRACT

A colorimetric multifunctional phototransmittance-based structural durability monitoring system is developed. The system consists of an array with four indium gallium zinc oxide (IGZO)-based phototransistors, a light source at a wavelength of 405 nm through a side-emitting optical fiber, and pH- and Cl-selective color-variable membranes. Under illumination at the wavelength of 405 nm at corrosion status, the pH- and Cl-responsive membrane, showing a change in their color, generates a change in the intensity of the transmitted light, which is received by the phototransistor array in the form of an electrical current. Ids and R (Ids /IpH 12 ) are inversely proportional to the pH, which ranges from 10 to 12. When the pH drops from 12 to 10, the magnitude of Ids and R increases to ≈103 . In the case of Cl detection, Ids and R (Ids /ICl 0 wt% ) increase nearly 50 times with an increase in Cl concentration of 0.05 wt%, and when the Cl concentration reaches 0.30 wt%, Ids and R increase to ≈103 times greater. This multifunctional colorimetric durability sensing system demonstrates considerable potential as a novel smart-diagnostic tool of structural durability with high stability, high sensitivity, and multifunction.


Subject(s)
Colorimetry/methods , Construction Materials/analysis , Chlorides/analysis , Colorimetry/instrumentation , Fiber Optic Technology/instrumentation , Fiber Optic Technology/methods , Gallium/chemistry , Hydrogen-Ion Concentration , Indium/chemistry , Light , Membranes, Artificial , Optical Fibers , Zinc Oxide/chemistry
10.
ACS Sens ; 4(12): 3291-3297, 2019 12 27.
Article in English | MEDLINE | ID: mdl-31789504

ABSTRACT

Water sensors are a type of level sensor that can be used in various applications requiring the sensing of water levels, such as in dams, nuclear power plants, water pipes, water tanks, and dehumidifiers. In particular, water sensors in water ingress monitoring systems (WIMS) protect lives and property from disasters caused by water leakage and flooding. Here, a resistive water sensor for WIMS that incorporates poly(3,4-ethylenedioxythinophene):poly(styrene sulfonate) (PEDOT:PSS) grafted with poly(ethylene glycol) methyl ether (PEGME) (PEDOT:PSS-g-PEGME copolymer) as high-conductivity electrodes and laser-treated PEDOT:PSS-g-PEGME copolymer as the low-conductivity resistive component is reported. The configuration of the water sensor is modeled as two parallel resistors (Rlaser treated PEDOT:PSS||Rwater) when water comes into contact with the sensor surface. The two-resistor configuration exhibits a better performance in comparison with single-resistor configurations comprising only PEDOT:PSS-g-PEGME copolymer or laser-treated PEDOT:PSS-g-PEMGE copolymer. Moreover, PEDOT:PSS-g-PEGME copolymer is applied to the sensor to improve the stability of PEDOT:PSS in water. We demonstrate that the sensor can detect the water level in real time with high sensitivity and accuracy, and thus has potential in applications for monitoring water-related hazards.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/chemistry , Electrochemical Techniques/methods , Polyethylene Glycols/chemistry , Polymers/chemistry , Polystyrenes/chemistry , Water/analysis , Bridged Bicyclo Compounds, Heterocyclic/radiation effects , Electrochemical Techniques/instrumentation , Electrodes , Infrared Rays , Lasers , Polyethylene Glycols/radiation effects , Polyethylene Terephthalates/chemistry , Polymers/radiation effects , Polystyrenes/radiation effects
11.
ACS Appl Mater Interfaces ; 10(27): 23270-23276, 2018 Jul 11.
Article in English | MEDLINE | ID: mdl-29916693

ABSTRACT

Multilayer MoS2 has been gaining interest as a new semiconducting material for flexible displays, memory devices, chemical/biosensors, and photodetectors. However, conventional multilayer MoS2 devices have exhibited limited performances due to the Schottky barrier and defects. Here, we demonstrate poly(diketopyrrolopyrrole-terthiophene) (PDPP3T) doping effects in multilayer MoS2, which results in improved electrical characteristics (∼4.6× higher on-current compared to the baseline and a high current on/off ratio of 106). Synchrotron-based study using X-ray photoelectron spectroscopy and grazing incidence wide-angle X-ray diffraction provides mechanisms that align the edge-on crystallites (97.5%) of the PDPP3T as well as a larger interaction with MoS2 that leads to dipole and charge transfer effects (at annealing temperature of 300 °C), which support the observed enhancement of the electrical characteristics. Furthermore, we demonstrate a complementary metal-oxide-semiconductor inverter that uses a p-type MoSe2 and a PDPP3T-doped MoS2 as charging and discharging channels, respectively.

12.
Adv Mater ; 30(12): e1705542, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29369423

ABSTRACT

Thin-film transistors (TFTs) based on multilayer molybdenum diselenide (MoSe2 ) synthesized by modified atmospheric pressure chemical vapor deposition (APCVD) exhibit outstanding photoresponsivity (103.1 A W-1 ), while it is generally believed that optical response of multilayer transition metal dichalcogenides (TMDs) is significantly limited due to their indirect bandgap and inefficient photoexcitation process. Here, the fundamental origin of such a high photoresponsivity in the synthesized multilayer MoSe2 TFTs is sought. A unique structural characteristic of the APCVD-grown MoSe2 is observed, in which interstitial Mo atoms exist between basal planes, unlike usual 2H phase TMDs. Density functional theory calculations and photoinduced transfer characteristics reveal that such interstitial Mo atoms form photoreactive electronic states in the bandgap. Models indicate that huge photoamplification is attributed to trapped holes in subgap states, resulting in a significant photovoltaic effect. In this study, the fundamental origin of high responsivity with synthetic MoSe2 phototransistors is identified, suggesting a novel route to high-performance, multifunctional 2D material devices for future wearable sensor applications.

13.
ACS Appl Mater Interfaces ; 9(49): 42943-42950, 2017 Dec 13.
Article in English | MEDLINE | ID: mdl-29160684

ABSTRACT

In this study, we propose a method for improving the stability of multilayer MoS2 field-effect transistors (FETs) by O2 plasma treatment and Al2O3 passivation while sustaining the high performance of bulk MoS2 FET. The MoS2 FETs were exposed to O2 plasma for 30 s before Al2O3 encapsulation to achieve a relatively small hysteresis and high electrical performance. A MoOx layer formed during the plasma treatment was found between MoS2 and the top passivation layer. The MoOx interlayer prevents the generation of excess electron carriers in the channel, owing to Al2O3 passivation, thereby minimizing the shift in the threshold voltage (Vth) and increase of the off-current leakage. However, prolonged exposure of the MoS2 surface to O2 plasma (90 and 120 s) was found to introduce excess oxygen into the MoOx interlayer, leading to more pronounced hysteresis and a high off-current. The stable MoS2 FETs were also subjected to gate-bias stress tests under different conditions. The MoS2 transistors exhibited negligible decline in performance under positive bias stress, positive bias illumination stress, and negative bias stress, but large negative shifts in Vth were observed under negative bias illumination stress, which is attributed to the presence of sulfur vacancies. This simple approach can be applied to other transition metal dichalcogenide materials to understand their FET properties and reliability, and the resulting high-performance hysteresis-free MoS2 transistors are expected to open up new opportunities for the development of sophisticated electronic applications.

SELECTION OF CITATIONS
SEARCH DETAIL