Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Oncologist ; 24(10): 1340-1347, 2019 10.
Article in English | MEDLINE | ID: mdl-31040255

ABSTRACT

BACKGROUND: Alterations in the DNA damage response (DDR) pathway confer sensitivity to certain chemotherapies, radiation, and other DNA damage repair targeted therapies. BRCA1/2 are the most well-studied DDR genes, but recurrent alterations are described in other DDR pathway members across cancers. Deleterious DDR alterations may sensitize tumor cells to poly (ADP-ribose) polymerase inhibition, but there are also increasing data suggesting that there may also be synergy with immune checkpoint inhibitors. The relevance of DDR defects in gastrointestinal (GI) cancers is understudied. We sought to characterize DDR-defective GI malignancies and to explore genomic context and tumor mutational burden (TMB) to provide a platform for future rational investigations. MATERIALS AND METHODS: Tumor samples from 17,486 unique patients with advanced colorectal, gastroesophageal, or small bowel carcinomas were assayed using hybrid-capture-based comprehensive genomic profiling including sequencing of 10 predefined DDR genes: ARID1A, ATM, ATR, BRCA1, BRCA2, CDK12, CHEK1, CHEK2, PALB2, and RAD51. TMB (mutations per megabase [mut/Mb]) was calculated from up to 1.14 Mb of sequenced DNA. Clinicopathologic features were extracted and descriptive statistics were used to explore genomic relationships among identified subgroups. RESULTS: DDR alterations were found in 17% of cases: gastric adenocarcinoma 475/1,750 (27%), small bowel adenocarcinoma 148/666 (22%), esophageal adenocarcinoma 467/2,501 (19%), and colorectal cancer 1,824/12,569 (15%). ARID1A (9.2%) and ATM (4.7%) were the most commonly altered DDR genes in this series, followed by BRCA2 (2.3%), BRCA1 (1.1%), CHEK2 (1.0%), ATR (0.8%), CDK12 (0.7%), PALB2 (0.6%), CHEK1 (0.1%) and RAD51 (0.1%). More than one DDR gene alteration was found in 24% of cases. High microsatellite instability (MSI-H) and high TMB (TMB-H, ≥20 mut/Mb) were found in 19% and 21% of DDR-altered cases, respectively. Of DDR-altered/TMB-H cases, 87% were also MSI-H. However, even in the microsatellite stable (MSS)/DDR-wild-type (WT) versus MSS/DDR-altered, TMB-high was seen more frequently (0.4% vs. 3.3%, P < .00001.) Median TMB was 5.4 mut/Mb in the MSS/DDR-altered subset versus 3.8 mut/Mb in the MSS/DDR-WT subset (P ≤ .00001), and ATR alterations were enriched in the MSS/TMB-high cases. CONCLUSION: This is the largest study to examine selected DDR defects in tubular GI cancers and confirms that DDR defects are relatively common and that there is an association between the selected DDR defects and a high TMB in more than 20% of cases. Microsatellite stable DDR-defective tumors with elevated TMB warrant further exploration. IMPLICATIONS FOR PRACTICE: Deleterious DNA damage response (DDR) alterations may sensitize tumor cells to poly (ADP-ribose) polymerase inhibition, but also potentially to immune checkpoint inhibitors, owing to accumulation of mutations in DDR-defective tumors. The relevance of DDR defects in gastrointestinal (GI) cancers is understudied. This article characterizes DDR-defective GI malignancies and explores genomic context and tumor mutational burden to provide a platform for future rational investigations.


Subject(s)
Biomarkers, Tumor/genetics , DNA Damage/genetics , Gastrointestinal Neoplasms/genetics , Female , Gastrointestinal Neoplasms/therapy , Humans , Male , Middle Aged , Mutation
2.
Med Hypotheses ; 83(4): 477-81, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25175713

ABSTRACT

Liver irradiation leads to a decreased uptake of a hepatobiliary directed MRI contrast agent (Gd-EOB-DTPA) as shown in studies performed 1-6 months after proton therapy, stereotactic ablative body radiation therapy and brachytherapy. Therefore, Gd-EOB-DTPA enhanced MRI could potentially be used for in vivo verification of the delivered dose distribution. Achieving this would be highly desirable, especially for particle therapy, where the accuracy and precision of the spatial dose deposition is affected by uncertainties of the range of particles in patients. However, the empirically detected effect needs to be understood before it can be used as a surrogate imaging biomarker for in vivo treatment verification or even liver functionality. Here, we propose a model of the underlying molecular mechanism of this phenomenon and discuss its implications for radiation therapy. We model the multi-step process starting from the immediate response after liver irradiation to the delayed/subsequent signal decrease in Gd-EOB-DTPA enhanced MRI. The model is based on both: (a) Evidence from different previously published reports and (b) a detailed evaluation of intra-hepatic signaling using a pathway analysis to identify potential pathways that are critical in this process. The proposed model provides mechanistic understanding of the reduced signal intensity in Gd-EOB-DTPA enhanced MRI occurring in irradiated liver. We think that establishing this comprehensive model will be of great interest for the field of radiation oncology and can trigger further research. For example, measuring the expression of involved cytokines and specific transport proteins in blood samples and biopsy derived tissue samples and correlating the results with MRI imaging could give important information and may even explain inter-patient variations in MRI signal decrease.


Subject(s)
Gadolinium DTPA/administration & dosage , Hepatocytes/radiation effects , Magnetic Resonance Imaging/methods , Hepatocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL