Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Int J Cancer ; 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39239866

ABSTRACT

Gall bladder cancer (GBC) is common among the socioeconomically deprived populations of certain geographical regions. Aflatoxin is a genotoxic hepatocarcinogen, which is recognized to have a role in the pathogenesis of hepatocellular carcinoma. However, the role of aflatoxin in the pathogenesis of GBC is largely unknown. We determined serum AFB1-Lys albumin adduct (AAA) levels as a marker of aflatoxin exposure in the patients with GBC and compared to those without GBC. The relationship of AAA levels to cytogenetic (TP53mutation&HER2/neu amplification) and radiological characteristics of the tumor was assessed. We included GBC cases (n = 51) and non-GBC controls (n = 100). Mean serum AAA levels were higher in the GBC group (n = 51) than those without GBC (n = 100) (26.1 ± 12.2 vs. 13.1 ± 11.9 ng/mL; p < .001). HER2/neu expression was associated with higher AAA levels compared to those with equivocal or negative expression (43.9 ± 3 vs. 28.6 ± 10 vs. 19.3 ± 7 ng/mL; p < .001). Older age (age >50 years) (odds ratio [OR] = 3.2 [CI: 1.3-8.2]; p = .013), positive Helicobacter pylori serology (OR = 5.1 [CI: 1.4-17.8]; p = .012), presence of GS (OR = 5 [CI: 1.5-16.9]; p = .009) and detectable AAA levels (OR = 6.8 [CI: 1.3-35.7]; p = .024) were independent risk factors for the presence of the GBC among all study subjects. Among patients harboring GS, older age (age >50 years) (OR = 4.5 [CI: 1.3-14.9]; p = .015), female gender (OR = 3.8 [CI: 1.2-12.5]; p = .027), presence of multiple GS (OR = 21.9 [CI: 4.8-100.4]; p < .001) and high serum AAA levels (OR = 5.3 [CI: 1.6-17.3]; p = .006) were independent risk factors for the presence of the GBC. Elderly age >50 years (OR = 2.6 [CI: 1.3-5.2]; p = .010) and frequent peanut consumption (OR = 2.3 [CI: 1.1-4.9]; p = .030) were independent risk factors for high serum AAA levels. The current study has implications for the prevention of GBC through the reduction of dietary aflatoxin exposure.

2.
Microbiol Spectr ; 12(6): e0415023, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38687072

ABSTRACT

Bacterial communities are often concomitantly present with numerous microorganisms in the human body and other natural environments. Amplicon-based microbiome studies have generally paid skewed attention, that too at a rather shallow genus level resolution, to the highly abundant bacteriome, with interest now forking toward the other microorganisms, particularly fungi. Given the generally sparse abundance of other microbes in the total microbiome, simultaneous sequencing of amplicons targeting multiple microbial kingdoms could be possible even with full multiplexing. Guiding studies are currently needed for performing and monitoring multi-kingdom-amplicon sequencing and data capture at scale. Aiming to address these gaps, amplification of full-length bacterial 16S rRNA gene and entire fungal internal-transcribed spacer (ITS) region was performed for human saliva samples (n = 96, including negative and positive controls). Combined amplicon DNA libraries were prepared for nanopore sequencing using a major fraction of 16S molecules and a minor fraction of ITS amplicons. Sequencing was performed in a single run of an R10.4.1 flow cell employing the latest V14 chemistry. An approach for real-time monitoring of the species saturation using dynamic rarefaction was designed as a guiding determinant of optimal run time. Real-time saturation monitoring for both bacterial and fungal species enabled the completion of sequencing within 30 hours, utilizing less than 60% of the total nanopores. Approximately 5 million high quality (HQ) taxonomically assigned reads were generated (~4.2 million bacterial and 0.7 million fungal), providing a wider (beyond bacteriome) snapshot of human oral microbiota at species-level resolution. Among the more than 400 bacterial and 240 fungal species identified in the studied samples, the species of Streptococcus (e.g., Streptococcus mitis and Streptococcus oralis) and Candida (e.g., Candida albicans and Candida tropicalis) were observed to be the dominating microbes in the oral cavity, respectively. This conformed well with the previous reports of the human oral microbiota. EnsembleSeq provides a proof-of-concept toward the identification of both fungal and bacterial species simultaneously in a single fully multiplexed nanopore sequencing run in a time- and resource-effective manner. Details of this workflow, along with the associated codebase, are provided to enable large-scale application for a holistic species-level microbiome study. IMPORTANCE: Human microbiome is a sum total of a variety of microbial genomes (including bacteria, fungi, protists, viruses, etc.) present in and on the human body. Yet, a majority of amplicon-based microbiome studies have largely remained skewed toward bacteriome as an assumed proxy of the total microbiome, primarily at a shallow genus level. Cost, time, effort, data quality/management, and importantly lack of guiding studies often limit progress in the direction of moving beyond bacteriome. Here, EnsembleSeq presents a proof-of-concept toward concomitantly capturing multiple-kingdoms of microorganisms (bacteriome and mycobiome) in a fully multiplexed (96-sample) single run of long-read amplicon sequencing. In addition, the workflow captures dynamic tracking of species-level saturation in a time- and resource-effective manner.


Subject(s)
Bacteria , Fungi , Microbiota , RNA, Ribosomal, 16S , Saliva , Humans , RNA, Ribosomal, 16S/genetics , Microbiota/genetics , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Saliva/microbiology , Fungi/genetics , Fungi/classification , Fungi/isolation & purification , Workflow , DNA, Bacterial/genetics , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , DNA, Fungal/genetics
SELECTION OF CITATIONS
SEARCH DETAIL