Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Int J Neuropsychopharmacol ; 26(12): 817-827, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-37875346

ABSTRACT

BACKGROUND: Little is known about the specific roles of cortical and accumbal oxytocin receptors in drug use disorders. To better understand the importance of the endogenous oxytocin system in cocaine relapse behavior, we developed an adeno-associated viral vector-expressing short hairpin (sh) RNAs to selectively degrade the rat oxytocin receptor (OxyR) mRNA in vivo. METHODS: Male (Sprague-Dawley) rats received bilateral infusions of the shRNA for the oxytocin receptor (shOxyR) or an shRNA control virus into the prefrontal cortex (PFC) or the nucleus accumbens core (NAc). Rats self-administered cocaine on an escalating FR ratio for 14 days, lever responding was extinguished, and rats were tested for cued and cocaine-primed reinstatement of drug seeking. RESULTS: OxyR knockdown in the PFC delayed the acquisition of lever pressing on an fixed ratio 1 schedule of reinforcement. All rats eventually acquired the same level of lever pressing and discrimination, and there were no differences in extinction. OxyR knockdown in the NAc had no effect during acquisition. In both the PFC and NAc, the shOxyR decreased cued reinstatement relative to shRNA control virus but was without effect during drug-primed reinstatement. OxyR knockdown in the PFC increased chamber activity during a social interaction task. CONCLUSIONS: This study provides critical new information about how endogenous OxyRs function to affect drug seeking in response to different precipitators of relapse. The tool developed to knockdown OxyRs in rat could provide important new insights that aid development of oxytocin-based therapeutics to reduce return-to-use episodes in people with substance use disorder and other neuropsychiatric disorders.


Subject(s)
Cocaine-Related Disorders , Cocaine , Humans , Rats , Male , Animals , Nucleus Accumbens/metabolism , Rats, Sprague-Dawley , Receptors, Oxytocin/genetics , Receptors, Oxytocin/metabolism , Oxytocin/pharmacology , Cocaine/pharmacology , Prefrontal Cortex/metabolism , Cocaine-Related Disorders/metabolism , Recurrence , RNA, Small Interfering/pharmacology , Self Administration , Extinction, Psychological
2.
Neuroendocrinology ; 113(11): 1112-1126, 2023.
Article in English | MEDLINE | ID: mdl-36709749

ABSTRACT

INTRODUCTION: There are numerous pharmacologic treatments for opioid use disorder (OUD), but none that directly target the underlying addictive effects of opioids. Oxytocin, a peptide hormone produced in the paraventricular nucleus (PVN) of the hypothalamus, has been investigated as a potential therapeutic for OUD. Promising preclinical and clinical results have been reported, but the brain region(s) and mechanism(s) by which oxytocin impacts reward processes remain undetermined. METHODS: Here, we assess peripherally administered oxytocin's impacts on cued reinstatement of heroin seeking following forced abstinence and its effects on neuronal activation in the PVN and key projection regions. We also examine how designer receptors exclusively activated by designer drug (DREADD)-mediated activation or inhibition of oxytocinergic PVN neurons alters cued heroin seeking and social interaction. RESULTS: As predicted, peripheral oxytocin administration successfully decreased cued heroin seeking on days 1 and 30 of abstinence. Oxytocin administration also led to increased neuronal activity within the PVN and the central amygdala (CeA). Activation of oxytocinergic PVN neurons with an excitatory (Gq) DREADD did not impact cued reinstatement or social interaction. In contrast, suppression with an inhibitory (Gi) DREADD reduced heroin seeking on abstinence day 30 and decreased time spent interacting with a novel conspecific. DISCUSSION: These findings reinforce oxytocin's therapeutic potential for OUD, the basis for which may be driven in part by increased PVN-CeA circuit activity. Our results also suggest that oxytocin has distinct signaling and/or other mechanisms of action to produce these effects, as inhibition, but not activation, of oxytocinergic PVN neurons did not recapitulate the suppression in heroin seeking.


Subject(s)
Oxytocin , Paraventricular Hypothalamic Nucleus , Oxytocin/pharmacology , Heroin/pharmacology , Hypothalamus , Brain
3.
Addict Biol ; 27(1): e13097, 2022 01.
Article in English | MEDLINE | ID: mdl-34431593

ABSTRACT

Methamphetamine (meth) causes enduring changes within the medial prefrontal cortex (mPFC) and the nucleus accumbens (NA). Projections from the mPFC to the NA have a distinct dorsal-ventral distribution, with the prelimbic (PL) mPFC projecting to the NAcore, and the infralimbic (IL) mPFC projecting to the NAshell. Inhibition of these circuits has opposing effects on cocaine relapse. Inhibition of PL-NAcore reduces cued reinstatement of cocaine seeking and IL-NAshell inhibition reinstates cocaine seeking. Meth, however, exhibits a different profile, as pharmacological inhibition of either the PL or IL decrease cued reinstatement of meth-seeking. The potentially opposing roles of the PL-NAcore and IL-NAshell projections remain to be explored in the context of cued meth seeking. Here we used an intersectional viral vector approach that employs a retrograde delivery of Cre from the NA and Cre-dependent expression of DREADD in the mPFC, in both male and female rats to inhibit or activate these parallel pathways. Inhibition of the PL-NAcore circuit reduced cued reinstatement of meth seeking under short and long-access meth self-administration and after withdrawal with and without extinction. Inhibition of the IL-NAshell also decreased meth cued reinstatement. Activation of the parallel circuits was without an effect. These studies show that inhibition of the PL-NAcore or the IL-NAshell circuits can inhibit reinstated meth seeking. Thus, the neural circuitry mediating cued reinstatement of meth seeking is similar to cocaine in the dorsal, but not ventral, mPFC-NA circuit.


Subject(s)
Activating Transcription Factor 2/pharmacology , Cues , Drug-Seeking Behavior/drug effects , Methamphetamine , Nucleus Accumbens/drug effects , Prefrontal Cortex/drug effects , Animals , Female , Male , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects
4.
bioRxiv ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38712202

ABSTRACT

The increased prevalence of opioid use disorder (OUD) makes it imperative to disentangle the biological mechanisms contributing to individual differences in OUD vulnerability. OUD shows strong heritability, however genetic variants contributing toward vulnerability remain poorly defined. We performed a genome-wide association study using over 850 male and female heterogeneous stock (HS) rats to identify genes underlying behaviors associated with OUD such as nociception, as well as heroin-taking, extinction and seeking behaviors. By using an animal model of OUD, we were able to identify genetic variants associated with distinct OUD behaviors while maintaining a uniform environment, an experimental design not easily achieved in humans. Furthermore, we used a novel non-linear network-based clustering approach to characterize rats based on OUD vulnerability to assess genetic variants associated with OUD susceptibility. Our findings confirm the heritability of several OUD-like behaviors, including OUD susceptibility. Additionally, several genetic variants associated with nociceptive threshold prior to heroin experience, heroin consumption, escalation of intake, and motivation to obtain heroin were identified. Tom1 , a microglial component, was implicated for nociception. Several genes involved in dopaminergic signaling, neuroplasticity and substance use disorders, including Brwd1 , Pcp4, Phb1l2 and Mmp15 were implicated for the heroin traits. Additionally, an OUD vulnerable phenotype was associated with genetic variants for consumption and break point, suggesting a specific genetic contribution for OUD-like traits contributing to vulnerability. Together, these findings identify novel genetic markers related to the susceptibility to OUD-relevant behaviors in HS rats.

5.
Neuropharmacology ; 240: 109711, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37673333

ABSTRACT

Return to methamphetamine (meth) use is part of an overarching addictive disorder hallmarked by cognitive sequela and cortical dysfunction in individuals who use meth chronically. In rats, long access meth self-administration produces object recognition memory deficits due to drug-induced plasticity within the perirhinal cortex (PRH). PRH projections are numerous and include the medial prefrontal cortex (mPFC). To evaluate the role of the PRH-mPFC reciprocal circuit in novel object recognition memory, a rgAAV encoding GFP-tagged Cre recombinase was infused into the PRH or the mPFC and rats were tested for recognition memory. On test day, one group explored both familiar and novel objects. A second group explored only familiar objects. GFP and Fos expression were visualized in the mPFC or PRH. During exploration, PRH neurons receiving input from the mPFC were equally activated by exploration of novel and familiar objects. In contrast, PRH neurons that provide input to the mPFC were disproportionately activated by novel objects. Further, the percent of Fos + cells in the PRH positively correlated with recognition memory. As such, the flow of communication appears to be from the PRH to the mPFC. In agreement with this proposed directionality, chemogenetic inhibition of the PRH-mPFC circuit impaired object recognition memory, whereas chemogenetic activation in animals with a history of long access meth self-administration reversed the meth-induced recognition memory deficit. This finding informs future work aimed at understanding the role of the PRH, mPFC, and their connectivity in meth associated memory deficits. These data suggest a more complex circuitry governing recognition memory than previously indicated with anatomical or lesion studies.


Subject(s)
Methamphetamine , Rats , Animals , Recognition, Psychology , Memory Disorders/metabolism , Prefrontal Cortex/metabolism , Visual Perception
6.
Neuropsychopharmacology ; 46(10): 1848-1856, 2021 09.
Article in English | MEDLINE | ID: mdl-34226657

ABSTRACT

Exposure to acute stress can increase vulnerability to develop or express many psychiatric disorders, including post-traumatic stress disorder. We hypothesized that stress-induced psychiatric vulnerability is associated with enduring neuroplasticity in the nucleus accumbens core because stress exposure can alter drug addiction-related behaviors that are associated with accumbens synaptic plasticity. We used a single 2-h stress session and 3 weeks later exposed male and female rats to stress-conditioned odors in a modified defensive burying task, and quantified both active and avoidant coping strategies. We measured corticosterone, dendritic spine and astrocyte morphology in accumbens, and examined reward sensitivity using a sucrose two-bottle choice and operant sucrose self-administration. Exposure to stress odor increased burying (active coping) and immobility (avoidant coping) in the defensive burying task in female and male rats. Systemic corticosterone was transiently increased by both ongoing acute restraint stress and stress-conditioned odors. Three weeks after administering acute restraint stress, we observed increased dendritic spine density and head diameter, and decreased synaptic association with astroglia and the astroglial glutamate transporter, GLT-1. Exposure to conditioned stress further increased head diameter without affecting spine density or astroglial morphology, and this increase by conditioned stress was correlated with burying behavior. Finally, we found that stress-exposed females have a preference for sweet solutions and higher motivation to seek sucrose than stressed male rats. We conclude that acute stress produced enduring plasticity in accumbens postsynapses and associated astroglia. Moreover, conditioned stress odors induced active behavioral coping strategies that were correlated with dendritic spine morphology.


Subject(s)
Cues , Neuronal Plasticity , Animals , Drug-Seeking Behavior , Female , Male , Nucleus Accumbens , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL