Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Arch Pharm (Weinheim) ; 356(3): e2200409, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36446720

ABSTRACT

Herein we report the synthesis of 21 novel small molecules inspired by metronidazole and Schiff base compounds. The compounds were evaluated against Trichomonas vaginalis and cross-screened against other pathogenic protozoans of clinical relevance. Most of these compounds were potent against T. vaginalis, exhibiting IC50 values < 5 µM. Compound 20, the most active compound against T. vaginalis, exhibited an IC50 value of 3.4 µM. A few compounds also exhibited activity against Plasmodium falciparum and Trypanosomal brucei brucei, with compound 6 exhibiting an IC50 value of 0.7 µM against P. falciparum and compound 22 exhibiting an IC50 value of 1.4 µM against T.b. brucei. Compound 22 is a broad-spectrum antiprotozoal agent, showing activities against all three pathogenic protozoans under investigation.


Subject(s)
Antiprotozoal Agents , Malaria, Falciparum , Trichomonas vaginalis , Humans , Metronidazole/pharmacology , Schiff Bases/pharmacology , Structure-Activity Relationship , Antiprotozoal Agents/pharmacology
2.
Chem Biodivers ; 19(11): e202200150, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36253138

ABSTRACT

Previous research shows that the root and bark extracts of Euclea natalensis have antiplasmodial activity, but the leaves have not been examined yet. This study investigated the phytochemical, antiplasmodial, and cytotoxic properties of the plant leaves. The activity against 3D7 Plasmodium falciparum was determined using the parasite lactate dehydrogenase assay, and the cytotoxicity against Vero and HeLa cells was evaluated using the MTT and resazurin assays, respectively. The bioactive compounds were isolated by chromatography, and their structures were established with spectroscopic and spectrometric techniques. The extract showed antiplasmodial activity (IC50 =25.6 µg/mL) and was not cytotoxic against Vero cells (IC50 =403.7 µg/mL). Purification of the extract afforded six flavonoid glycosides, four triterpenoids, and a coumarin. The glycosides showed antiplasmodial and cytotoxic activities, against HeLa cells, at 50 µg/mL, but the activity was reduced at 10 µg/mL. Naphthoquinones, which are among the predominant phytochemicals in the root and root bark of E. natalensis, were not detected in the leaves.


Subject(s)
Antimalarials , Ebenaceae , Humans , Chlorocebus aethiops , Animals , Antimalarials/pharmacology , Antimalarials/chemistry , HeLa Cells , Vero Cells , Plant Extracts/chemistry , Ebenaceae/chemistry , Plant Leaves/chemistry , Plasmodium falciparum , Phytochemicals/pharmacology , Phytochemicals/analysis , Glycosides/analysis
3.
Bioorg Med Chem Lett ; 38: 127855, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33609655

ABSTRACT

Several classes of antimalarial drugs are currently available, although issues of toxicity and the emergence of drug resistant malaria parasites have reduced their overall therapeutic efficiency. Quinoline based antiplasmodial drugs have unequivocally been long-established and continue to inspire the design of new antimalarial agents. Herein, a series of mono- and bisquinoline methanamine derivatives were synthesised through sequential steps; Vilsmeier-Haack, reductive amination, and nucleophilic substitution, and obtained in low to excellent yields. The resulting compounds were investigated for in vitro antiplasmodial activity against the 3D7 chloroquine-sensitive strain of Plasmodium falciparum, and compounds 40 and 59 emerged as the most promising with IC50 values of 0.23 and 0.93 µM, respectively. The most promising compounds were also evaluated in silico by molecular docking protocols for binding affinity to the {001} fast-growing face of a hemozoin crystal model.


Subject(s)
Antimalarials/pharmacology , Drug Design , Methylamines/pharmacology , Plasmodium falciparum/drug effects , Quinolines/pharmacology , Antimalarials/chemical synthesis , Antimalarials/chemistry , Dose-Response Relationship, Drug , Methylamines/chemical synthesis , Methylamines/chemistry , Molecular Docking Simulation , Molecular Structure , Parasitic Sensitivity Tests , Quinolines/chemical synthesis , Quinolines/chemistry , Structure-Activity Relationship
4.
Chem Biodivers ; 18(8): e2100240, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34081396

ABSTRACT

Ozoroa obovata (Oliv.) R. & A. Fern. var. obovata found in KwaZulu-Natal in South Africa was investigated for phytochemical constituents, and for antiplasmodial and cytotoxic effects. The plant leaves were collected from the University of KwaZulu-Natal (UKZN) arboretum on the Pietermaritzburg Campus, in March 2019. The inhibitory activity against 3D7 Plasmodium falciparum was determined using the parasite lactate dehydrogenase (pLDH) assay and cytotoxicity against HeLa cells was evaluated using the resazurin assay. The bioactive compounds were isolated by chromatographic purification and their structures were established with spectroscopic and spectrometric techniques. The plant leaf extract displayed significant antiplasmodial activity at 50 µg/mL and was also cytotoxic against HeLa cells. Chromatographic purification of the extract led to the isolation of two biflavonoids, four flavonoid glycosides, a steroid glycoside, and a megastigmene derivative. The compounds displayed antiplasmodial and antiproliferative activities at 50 µg/mL but the activity was substantially reduced at 10 µg/mL. The activities and compounds are being reported in O. obovata for the first time.


Subject(s)
Anacardiaceae/chemistry , Antimalarials/pharmacology , Plant Extracts/chemistry , Plasmodium falciparum/drug effects , Anacardiaceae/metabolism , Antimalarials/chemistry , Antimalarials/isolation & purification , Biflavonoids/chemistry , Biflavonoids/isolation & purification , Biflavonoids/pharmacology , Cell Survival/drug effects , Glycosides/chemistry , Glycosides/isolation & purification , Glycosides/pharmacology , HeLa Cells , Humans , Plant Extracts/pharmacology , Plant Leaves/chemistry , Plant Leaves/metabolism
5.
Arch Pharm (Weinheim) ; 354(7): e2000331, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33710656

ABSTRACT

A rationally designed series of 2-(N-cyclicamino)quinolines coupled with methyl (E)-3-(2/3/4-aminophenyl)acrylates was synthesized and subjected to in vitro screening bioassays for potential antiplasmodial and antitrypanosomal activities against a chloroquine-sensitive (3D7) strain of Plasmodium falciparum and nagana Trypanosoma brucei brucei 427, respectively. Substituent effects on activity were evaluated; meta-acrylate 24 and the ortho-acrylate 29 exhibited the highest antiplasmodial (IC50 = 1.4 µM) and antitrypanosomal (IC50 = 10.4 µM) activities, respectively. The activity against HeLa cells showed that the synthesized analogs are not cytotoxic at the maximum tested concentration. The ADME (absorption, distribution, metabolism, and excretion) drug-like properties of the synthesized compounds were predicted through the SwissADME software.


Subject(s)
Acrylates/pharmacology , Antimalarials/pharmacology , Quinolines/pharmacology , Trypanocidal Agents/pharmacology , Acrylates/chemical synthesis , Acrylates/chemistry , Antimalarials/chemical synthesis , Antimalarials/chemistry , HeLa Cells , Humans , Inhibitory Concentration 50 , Plasmodium falciparum/drug effects , Quinolines/chemical synthesis , Quinolines/chemistry , Structure-Activity Relationship , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry , Trypanosoma brucei brucei/drug effects
6.
Molecules ; 26(13)2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34201912

ABSTRACT

Ethnobotanical surveys indicate that the Masai and Kikuyu in Kenya, the Venda in South Africa, and the Gumuz people of Ethiopia use Pappea capensis for the treatment of malaria. The present study aimed to investigate the phytochemical and antiplasmodial properties of the plant leaves. The bioactive compounds were isolated using chromatographic techniques. The structures were established using NMR, HRMS, and UV spectroscopy. Antiplasmodial activity of P. capensis leaf extract and isolated compounds against chloroquine-sensitive 3D7 P. falciparum was evaluated using the parasite lactate dehydrogenase assay. Cytotoxicity against HeLa (human cervix adenocarcinoma) cells was determined using the resazurin assay. The extract inhibited the viability of Plasmodium falciparum by more than 80% at 50 µg/mL, but it was also cytotoxic against HeLa cells at the same concentration. Chromatographic purification of the extract led to the isolation of four flavonoid glycosides and epicatechin. The compounds displayed a similar activity pattern with the extract against P. falciparum and HeLa cells. The results from this study suggest that the widespread use of P. capensis in traditional medicine for the treatment of malaria might have some merits. However, more selectivity studies are needed to determine whether the leaf extract is cytotoxic against noncancerous cells.


Subject(s)
Antimalarials , Apiaceae/chemistry , Cytotoxins , Flavonoids , Malaria, Falciparum/drug therapy , Plant Leaves/chemistry , Plasmodium falciparum/growth & development , Antimalarials/chemistry , Antimalarials/isolation & purification , Antimalarials/pharmacology , Cytotoxins/chemistry , Cytotoxins/isolation & purification , Cytotoxins/pharmacology , Flavonoids/chemistry , Flavonoids/isolation & purification , Flavonoids/pharmacology , HeLa Cells , Humans , Malaria, Falciparum/metabolism
7.
Molecules ; 26(4)2021 Feb 20.
Article in English | MEDLINE | ID: mdl-33672753

ABSTRACT

The cell wall of Mycobacterium tuberculosis (Mtb) has a unique structural organisation, comprising a high lipid content mixed with polysaccharides. This makes cell wall a formidable barrier impermeable to hydrophilic agents. In addition, during host infection, Mtb resides in macrophages within avascular necrotic granulomas and cavities, which shield the bacterium from the action of most antibiotics. To overcome these protective barriers, a new class of anti-TB agents exhibiting lipophilic character have been recommended by various reports in literature. Herein, a series of lipophilic heterocyclic quinolone compounds was synthesised and evaluated in vitro against pMSp12::GFP strain of Mtb, two protozoan parasites (Plasmodium falciparum and Trypanosoma brucei brucei) and against ESKAPE pathogens. The resultant compounds exhibited varied anti-Mtb activity with MIC90 values in the range of 0.24-31 µM. Cross-screening against P. falciparum and T.b. brucei, identified several compounds with antiprotozoal activities in the range of 0.4-20 µM. Compounds were generally inactive against ESKAPE pathogens, with only compounds 8c, 8g and 13 exhibiting moderate to poor activity against S. aureus and A. baumannii.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antiprotozoal Agents/pharmacology , Quinolones/pharmacology , Acinetobacter baumannii/drug effects , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Dose-Response Relationship, Drug , Microbial Sensitivity Tests , Molecular Structure , Parasitic Sensitivity Tests , Plasmodium falciparum/drug effects , Quinolones/chemical synthesis , Quinolones/chemistry , Staphylococcus aureus/drug effects , Trypanosoma brucei brucei/drug effects
8.
Molecules ; 26(5)2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33801371

ABSTRACT

A tailored series of coumarin-based ferrocenyl 1,3-oxazine hybrid compounds was synthesized and investigated for potential antiparasitic activity, drawing inspiration from the established biological efficacy of the constituent chemical motifs. The structural identity of the synthesized compounds was confirmed by common spectroscopic techniques: NMR, HRMS and IR. Biological evaluation studies reveal that the compounds exhibit higher in vitro antiparasitic potency against the chemosensitive malarial strain (3D7 P. falciparum) over the investigated trypanosomiasis causal agent (T. b. brucei 427) with mostly single digit micromolar IC50 values. When read in tandem with the biological performance of previously reported structurally similar non-coumarin, phenyl derivatives (i.e., ferrocenyl 1,3-benzoxazines and α-aminocresols), structure-activity relationship analyses suggest that the presence of the coumarin nucleus is tolerated for biological activity though this may lead to reduced efficacy. Preliminary mechanistic studies with the most promising compound (11b) support hemozoin inhibition and DNA interaction as likely mechanistic modalities by which this class of compounds may act to produce plasmocidal and antitrypanosomal effects.


Subject(s)
Antimalarials/pharmacology , Antiprotozoal Agents/pharmacology , Coumarins/chemistry , Ferrous Compounds/chemistry , Oxazines/chemistry , Plasmodium falciparum/drug effects , Trypanosoma brucei brucei/drug effects , Antimalarials/chemistry , Antiprotozoal Agents/chemistry , Cell Proliferation , Cell Survival , Female , Humans , In Vitro Techniques , Molecular Structure , Structure-Activity Relationship , Triple Negative Breast Neoplasms/drug therapy , Tumor Cells, Cultured
9.
Chembiochem ; 21(18): 2643-2658, 2020 09 14.
Article in English | MEDLINE | ID: mdl-32307798

ABSTRACT

The conjugation of organometallic complexes to known bioactive organic frameworks is a proven strategy revered for devising new drug molecules with novel modes of action. This approach holds great promise for the generation of potent drug leads in the quest for therapeutic chemotypes with the potential to overcome the development of clinical resistance. Herein, we present the in vitro antiplasmodial and antiproliferative investigation of ferrocenyl α-aminocresol conjugates assembled by amalgamation of the organometallic ferrocene unit and an α-aminocresol scaffold possessing antimalarial activity. The compounds pursued in the study exhibited higher toxicity towards the chemosensitive (3D7) and -resistant (Dd2) strains of the Plasmodium falciparum parasite than to the human HCC70 triple-negative breast cancer cell line. Indication of cross-resistance was absent for the compounds evaluated against the multi-resistant Dd2 strain. Structure-activity analysis revealed that the phenolic hydroxy group and rotatable σ bond between the α-carbon and NH group of the α-amino-o-cresol skeleton are crucial for the biological activity of the compounds. Spectrophotometric techniques and in silico docking simulations performed on selected derivatives suggest that the compounds show a dual mode of action involving hemozoin inhibition and DNA interaction via minor-groove binding. Lastly, compound 9 a, identified as a possible lead, exhibited preferential binding for the plasmodial DNA isolated from 3D7 P. falciparum trophozoites over the mammalian calf thymus DNA, thereby substantiating the enhanced antiplasmodial activity of the compounds. The presented research demonstrates the strategy of incorporating organometallic complexes into known biologically active organic scaffolds as a viable avenue to fashion novel multimodal compounds with potential to counter the development drug resistance.


Subject(s)
Antimalarials/pharmacology , Antineoplastic Agents/pharmacology , DNA, Fungal/drug effects , Hemeproteins/antagonists & inhibitors , Organometallic Compounds/pharmacology , Plasmodium falciparum/drug effects , Antimalarials/chemical synthesis , Antimalarials/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cresols/chemistry , Cresols/pharmacology , Drug Screening Assays, Antitumor , Ferrous Compounds/chemistry , Ferrous Compounds/pharmacology , Hemeproteins/metabolism , Humans , Metallocenes/chemistry , Metallocenes/pharmacology , Microbial Sensitivity Tests , Molecular Docking Simulation , Organometallic Compounds/chemical synthesis , Organometallic Compounds/chemistry
10.
Bioorg Med Chem Lett ; 30(5): 126911, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31952962
11.
Bioorg Chem ; 105: 104280, 2020 12.
Article in English | MEDLINE | ID: mdl-33152647

ABSTRACT

A series of N-benzylated phosphoramidate esters, containing a 3,4-dihydroxyphenyl Mg2+-chelating group, has been synthesised in five steps as analogues of fosmidomycin, a Plasmodium falciparum 1-deoxy-1-d-xylulose-5-phosphate reductoisomerase (PfDXR) inhibitor. The 3,4-dihydroxyphenyl group effectively replaces the Mg2+-chelating hydroxamic acid group in fosmidomycin. The compounds showed very encouraging anti-parasitic activity with IC50 values of 5.6-16.4 µM against Plasmodium falciparum parasites and IC50 values of 5.2 - 10.2 µM against Trypanosoma brucei brucei (T.b.brucei). Data obtained from in silico docking of the ligands in the PfDXR receptor cavity (3AU9)5 support their potential as PfDXR inhibitors.


Subject(s)
Amides/chemical synthesis , Antimalarials/chemical synthesis , Coordination Complexes/chemical synthesis , Magnesium/chemistry , Phosphoric Acids/chemical synthesis , Plasmodium falciparum/drug effects , Antimalarials/pharmacology , Coordination Complexes/pharmacology , Dose-Response Relationship, Drug , Drug Design , Fosfomycin/analogs & derivatives , Fosfomycin/pharmacology , HeLa Cells , Humans , Ligands , Molecular Docking Simulation , Trypanosoma brucei brucei/drug effects
12.
Bioorg Chem ; 101: 103947, 2020 08.
Article in English | MEDLINE | ID: mdl-32559578

ABSTRACT

Synthetic pathways have been developed to access a series of N-benzylated phosphoramidic acid derivatives as novel, achiral analogues of the established Plasmodium falciparum 1-deoxy-d-xylulose-5-phosphate reductase (PfDXR) enzyme inhibitor, FR900098. Bioassays of the targeted compounds and their synthetic precursors have revealed minimal antimalarial activity but encouraging anti-trypanosomal activity - in one case with an IC50 value of 5.4 µM against Trypanosoma brucei, the parasite responsible for Nagana (African cattle sleeping sickness). The results of relevant in silico modelling and docking studies undertaken in the design and evaluation of these compounds are discussed.


Subject(s)
Amides/chemical synthesis , Amides/pharmacology , Antimalarials/chemical synthesis , Antimalarials/pharmacology , Phosphoric Acids/chemical synthesis , Phosphoric Acids/pharmacology , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/pharmacology , Amides/chemistry , Animals , Antimalarials/chemistry , Cattle , Phosphoric Acids/chemistry , Plasmodium falciparum/drug effects , Structure-Activity Relationship
13.
Molecules ; 25(17)2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32825216

ABSTRACT

As part of an ongoing study of natural products from local medicinal plants, the methanol extract of stem bark of Rauvolfia caffra Sond was investigated for biological activity. Column chromatography and preparative thin-layer chromatography were used to isolate lupeol (1), raucaffricine (2), N-methylsarpagine (3), and spegatrine (4). The crude extract, fractions and isolated compounds were tested for anti-oxidant, antitrypanosomal and anti-proliferation activities. Two fractions displayed high DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging activity and reducing power with IC50 (The half maximal inhibitory concentration) and IC0.5 values of 0.022 ± 0.003 mg/mL and 0.036 ± 0.007 mg/mL, and 0.518 ± 0.044 mg/mL and 1.076 ± 0.136 mg/mL, respectively. Spegatrine (4) was identified as the main antioxidant compound in R. caffra with IC50 and IC0.5 values of 0.119 ± 0.067 mg/mL and 0.712 ± 0 mg/mL, respectively. One fraction displayed high antitrypanosomal activity with an IC50 value of 18.50 µg/mL. However, the major constituent of this fraction, raucaffricine (2), was not active. The crude extract, fractions and pure compounds did not display any cytotoxic effect at a concentration of 50 µg/mL against HeLa cells. This study shows directions for further in vitro studies on the antioxidant and antitrypanosomal activities of Rauvolfia caffra Sond.


Subject(s)
Antioxidants , Rauwolfia/chemistry , Trypanocidal Agents , Trypanosoma brucei brucei/growth & development , Antioxidants/chemistry , Antioxidants/isolation & purification , Antioxidants/pharmacology , HeLa Cells , Humans , Trypanocidal Agents/chemistry , Trypanocidal Agents/isolation & purification , Trypanocidal Agents/pharmacology
14.
Molecules ; 25(7)2020 Apr 04.
Article in English | MEDLINE | ID: mdl-32260364

ABSTRACT

With an intention of identifying chalcone derivatives exhibiting anti-protozoal activity, a cohort of relatively unexplored arylpyrrole-based chalcone derivatives were synthesized in moderate to good yields. The resultant compounds were evaluated in vitro for their potential activity against a cultured Trypanosoma brucei brucei 427 strain. Several compounds displayed mostly modest in vitro anti-trypanosomal activity with compounds 10e and 10h emerging as active candidates with IC50 values of 4.09 and 5.11 µM, respectively. More importantly, a concomitant assessment of their activity against a human cervix adenocarcinoma (HeLa) cell line revealed that these compounds are non-toxic.


Subject(s)
Chalcones/chemical synthesis , Pyrroles/chemical synthesis , Trypanocidal Agents/chemical synthesis , Trypanosoma brucei brucei/drug effects , Cell Proliferation , Chalcones/chemistry , Chalcones/pharmacology , Crystallography, X-Ray , HeLa Cells , Humans , Inhibitory Concentration 50 , Molecular Structure , Pyrroles/chemistry , Pyrroles/pharmacology , Structure-Activity Relationship , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacology
15.
J Biol Inorg Chem ; 24(2): 139-149, 2019 03.
Article in English | MEDLINE | ID: mdl-30542925

ABSTRACT

A series of tailored novobiocin-ferrocene conjugates was prepared in moderate yields and investigated for in vitro anticancer and antiplasmodial activity against the MDA-MB-231 breast cancer line and Plasmodium falciparum 3D7 strain, respectively. While the target compounds displayed moderate anticancer activity against the breast cancer cell line with IC50 values in the mid-micromolar range, compounds 10a-c displayed promising antiplasmodial activity as low as 0.889 µM. Furthermore, the most promising compounds were tested for inhibitory effects against a postulated target, heat shock protein 90 (Hsp90). A selection of tailored novobiocin derivatives bearing the organometallic ferrocene unit were synthesized and characterized by common spectroscopic techniques. The target compounds were investigated for in vitro anticancer and antimalarial activity against the MDA-MB-231 breast cancer cell line and Plasmodium falciparum 3D7 strain, respectively.


Subject(s)
Antimalarials/pharmacology , Antineoplastic Agents/pharmacology , Ferrous Compounds/pharmacology , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Metallocenes/pharmacology , Novobiocin/pharmacology , Plasmodium falciparum/drug effects , Antimalarials/chemical synthesis , Antimalarials/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Ferrous Compounds/chemistry , HSP90 Heat-Shock Proteins/metabolism , HeLa Cells , Humans , Metallocenes/chemistry , Molecular Structure , Novobiocin/chemistry , Parasitic Sensitivity Tests , Structure-Activity Relationship
16.
Molecules ; 24(1)2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30609681

ABSTRACT

Pteridine reductase 1 (PTR1) is a trypanosomatid multifunctional enzyme that provides a mechanism for escape of dihydrofolate reductase (DHFR) inhibition. This is because PTR1 can reduce pterins and folates. Trypanosomes require folates and pterins for survival and are unable to synthesize them de novo. Currently there are no anti-folate based Human African Trypanosomiasis (HAT) chemotherapeutics in use. Thus, successful dual inhibition of Trypanosoma brucei dihydrofolate reductase (TbDHFR) and Trypanosoma brucei pteridine reductase 1 (TbPTR1) has implications in the exploitation of anti-folates. We carried out molecular docking of a ligand library of 5742 compounds against TbPTR1 and identified 18 compounds showing promising binding modes. The protein-ligand complexes were subjected to molecular dynamics to characterize their molecular interactions and energetics, followed by in vitro testing. In this study, we identified five compounds which showed low micromolar Trypanosome growth inhibition in in vitro experiments that might be acting by inhibition of TbPTR1. Compounds RUBi004, RUBi007, RUBi014, and RUBi018 displayed moderate to strong antagonism (mutual reduction in potency) when used in combination with the known TbDHFR inhibitor, WR99210. This gave an indication that the compounds might inhibit both TbPTR1 and TbDHFR. RUBi016 showed an additive effect in the isobologram assay. Overall, our results provide a basis for scaffold optimization for further studies in the development of HAT anti-folates.


Subject(s)
Drug Discovery , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Oxidoreductases/antagonists & inhibitors , Oxidoreductases/chemistry , Quantitative Structure-Activity Relationship , Trypanosoma brucei brucei/drug effects , Trypanosoma brucei brucei/enzymology , Amino Acid Sequence , Blood-Brain Barrier/metabolism , Computer Simulation , Dose-Response Relationship, Drug , Hydrogen Bonding , Models, Molecular , Molecular Conformation , Molecular Structure , Parasitic Sensitivity Tests , Permeability , Tetrahydrofolate Dehydrogenase/chemistry , Tetrahydrofolate Dehydrogenase/metabolism
17.
Molecules ; 24(9)2019 May 04.
Article in English | MEDLINE | ID: mdl-31060249

ABSTRACT

Co-infection of malaria and tuberculosis, although not thoroughly investigated, has been noted. With the increasing prevalence of tuberculosis in the African region, wherein malaria is endemic, it is intuitive to suggest that the probability of co-infection with these diseases is likely to increase. To avoid the issue of drug-drug interactions when managing co-infections, it is imperative to investigate new molecules with dual activities against the causal agents of these diseases. To this effect, a small library of quinolone-thiosemicarbazones was synthesised and evaluated in vitro against Plasmodium falciparum and Mycobacterium tuberculosis, the causal agents of malaria and tuberculosis, respectively. The compounds were also evaluated against HeLa cells for overt cytotoxicity. Most compounds in this series exhibited activities against both organisms, with compound 10, emerging as the hit; with an MIC90 of 2 µM against H37Rv strain of M. tuberculosis and an IC50 of 1 µM against the 3D7 strain of P. falciparum. This study highlights quinolone-thiosemicarabazones as a class of compounds that can be exploited further in search of novel, safe agents with potent activities against both the causal agents of malaria and tuberculosis.


Subject(s)
Anti-Infective Agents/chemical synthesis , Mycobacterium tuberculosis/drug effects , Plasmodium falciparum/drug effects , Quinolones/chemistry , Small Molecule Libraries/chemical synthesis , Thiosemicarbazones/chemistry , Animals , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Candy , Drug Interactions , HeLa Cells , Humans , Inhibitory Concentration 50 , Malaria, Falciparum/drug therapy , Molecular Structure , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Tuberculosis
18.
Medicina (Kaunas) ; 55(5)2019 May 24.
Article in English | MEDLINE | ID: mdl-31137665

ABSTRACT

Background and objectives: Sleeping sickness and malaria alike are insect-borne protozoan diseases that share overlapping endemic areas in sub-Saharan Africa. The causative agent for malaria has developed resistance against all currently deployed anti-malarial agents. In the case of sleeping sickness, the currently deployed therapeutic options are limited in efficacy and activity spectra, and there are very few drug candidates in the development pipeline. Thus, there is a need to search for new drug molecules with a novel mode of actions. Materials and Methods: In the current study, an in vitro screening of a library of tetralone derivatives and related benzocycloalkanones was effected against T. b. brucei and P. falciparum. Results: Several hits with low micromolar activity (0.4-8 µM) against T. b. brucei were identified. Conclusions: The identified hits have a low molecular weight (<280 Da), a low total polar surface area (<50 Ų), and a defined structure activity relationship, which all make them potential starting points for further hit optimization studies.


Subject(s)
Malaria/drug therapy , Tetralones/pharmacology , Trypanosomiasis, African/drug therapy , Humans , Malaria/physiopathology , Plasmodium falciparum/drug effects , Plasmodium falciparum/pathogenicity , Tetralones/therapeutic use , Trypanosoma brucei gambiense/drug effects , Trypanosoma brucei gambiense/pathogenicity , Trypanosomiasis, African/physiopathology
19.
Bioorg Med Chem Lett ; 28(6): 1067-1070, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29482943

ABSTRACT

A series of readily accessible 4-arylimino-3-hydroxybutanoic acids have been prepared and evaluated as potential HIV-1 Integrase inhibitors. None of the ligands exhibited significant toxicity against human embryonic kidney (HEK 293) cells, while five of them showed activity against HIV-1 integrase - the most active (6c) with an IC50 value of 3.5 µM. In silico docking studies indicate the capacity of ligand 6c to interact with several amino acid residues and the two Mg2+ cations in the HIV-1 integrase receptor cavity.


Subject(s)
HIV Integrase Inhibitors/pharmacology , HIV Integrase/metabolism , Hydroxybutyrates/pharmacology , Dose-Response Relationship, Drug , HEK293 Cells , HIV Integrase Inhibitors/chemical synthesis , HIV Integrase Inhibitors/chemistry , Humans , Hydroxybutyrates/chemical synthesis , Hydroxybutyrates/chemistry , Molecular Structure , Structure-Activity Relationship
20.
Molecules ; 24(1)2018 Dec 21.
Article in English | MEDLINE | ID: mdl-30583480

ABSTRACT

In this study, the chemical profile of a crude methanol extract of Rauvolfia caffra Sond was determined by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). Column chromatography and preparative thin layer chromatography were used to isolate three indole alkaloids (raucaffricine, N-methylsarpagine and spegatrine) and one triterpenoid (lupeol). The antiplasmodial activity was determined using the parasite lactate dehydrogenase (pLDH) assay. The UPLC-MS profile of the crude extract reveals that the major constituents of R. caffra are raucaffricine (m/z 513.2) and spegatrine (m/z 352.2). Fraction 3 displayed the highest antiplasmodial activity with an IC50 of 6.533 µg/mL. However, raucaffricine, isolated from the active fraction did not display any activity. The study identifies the major constituents of R. caffra and also demonstrates that the major constituents do not contribute to the antiplasmodial activity of R. caffra.


Subject(s)
Antimalarials/chemistry , Antimalarials/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Rauwolfia/chemistry , Antimalarials/isolation & purification , Chromatography, High Pressure Liquid , Dose-Response Relationship, Drug , Magnetic Resonance Spectroscopy , Molecular Structure , Phytochemicals/chemistry , Plant Extracts/isolation & purification , Spectroscopy, Fourier Transform Infrared , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL