Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
Genes Dev ; 32(19-20): 1297-1302, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30228204

ABSTRACT

The CNS of the protovertebrate Ciona intestinalis contains a single cluster of dopaminergic (DA) neurons, the coronet cells, which have been likened to the hypothalamus of vertebrates. Whole-embryo single-cell RNA sequencing (RNA-seq) assays identified Ptf1a as the most strongly expressed cell-specific transcription factor (TF) in DA/coronet cells. Knockdown of Ptf1a activity results in their loss, while misexpression results in the appearance of supernumerary DA/coronet cells. Photoreceptor cells and ependymal cells are the most susceptible to transformation, and both cell types express high levels of Meis Coexpression of both Ptf1a and Meis caused the wholesale transformation of the entire CNS into DA/coronet cells. We therefore suggest that the reiterative use of functional manipulations and single-cell RNA-seq assays is an effective means for the identification of regulatory cocktails underlying the specification of specific cell identities.


Subject(s)
Ciona intestinalis/genetics , Dopaminergic Neurons/metabolism , Animals , Cell Differentiation , Ciona intestinalis/embryology , Ciona intestinalis/growth & development , Ciona intestinalis/metabolism , Dopaminergic Neurons/cytology , Embryo, Nonmammalian/metabolism , Gene Expression Profiling , Gene Regulatory Networks , Single-Cell Analysis , Transcription Factors/metabolism
2.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Article in English | MEDLINE | ID: mdl-35042818

ABSTRACT

The protovertebrate Ciona intestinalis type A (sometimes called Ciona robusta) contains a series of sensory cell types distributed across the head-tail axis of swimming tadpoles. They arise from lateral regions of the neural plate that exhibit properties of vertebrate placodes and neural crest. The sensory determinant POU IV/Brn3 is known to work in concert with regional determinants, such as Foxg and Neurogenin, to produce palp sensory cells (PSCs) and bipolar tail neurons (BTNs), in head and tail regions, respectively. A combination of single-cell RNA-sequencing (scRNA-seq) assays, computational analysis, and experimental manipulations suggests that misexpression of POU IV results in variable transformations of epidermal cells into hybrid sensory cell types, including those exhibiting properties of both PSCs and BTNs. Hybrid properties are due to coexpression of Foxg and Neurogenin that is triggered by an unexpected POU IV feedback loop. Hybrid cells were also found to express a synthetic gene battery that is not coexpressed in any known cell type. We discuss these results with respect to the opportunities and challenges of reprogramming cell types through the targeted misexpression of cellular determinants.


Subject(s)
Ciona intestinalis/genetics , Neurons/metabolism , POU Domain Factors/metabolism , Animals , Biological Evolution , Cellular Reprogramming/genetics , Cellular Reprogramming/physiology , Ciona intestinalis/metabolism , Epidermis/innervation , Epidermis/metabolism , Gene Expression/genetics , Gene Expression Regulation, Developmental/genetics , Gene Regulatory Networks/genetics , Neural Crest/metabolism , Neural Plate/metabolism , POU Domain Factors/genetics , Single-Cell Analysis , Transcription Factors/metabolism , Vertebrates/genetics
3.
Nature ; 560(7717): 228-232, 2018 08.
Article in English | MEDLINE | ID: mdl-30069052

ABSTRACT

Placodes and neural crests represent defining features of vertebrates, yet their relationship remains unclear despite extensive investigation1-3. Here we use a combination of lineage tracing, gene disruption and single-cell RNA-sequencing assays to explore the properties of the lateral plate ectoderm of the proto-vertebrate, Ciona intestinalis. There are notable parallels between the patterning of the lateral plate in Ciona and the compartmentalization of the neural plate ectoderm in vertebrates4. Both systems exhibit sequential patterns of Six1/2, Pax3/7 and Msxb expression that depend on a network of interlocking regulatory interactions4. In Ciona, this compartmentalization network produces distinct but related types of sensory cells that share similarities with derivatives of both cranial placodes and the neural crest in vertebrates. Simple genetic disruptions result in the conversion of one sensory cell type into another. We focused on bipolar tail neurons, because they arise from the tail regions of the lateral plate and possess properties of the dorsal root ganglia, a derivative of the neural crest in vertebrates5. Notably, bipolar tail neurons were readily transformed into palp sensory cells, a proto-placodal sensory cell type that arises from the anterior-most regions of the lateral plate in the Ciona tadpole6. Proof of transformation was confirmed by whole-embryo single-cell RNA-sequencing assays. These findings suggest that compartmentalization of the lateral plate ectoderm preceded the advent of vertebrates, and served as a common source for the evolution of both cranial placodes and neural crest3,4.


Subject(s)
Biological Evolution , Ciona/cytology , Ciona/embryology , Ectoderm/cytology , Neural Crest/cytology , Vertebrates/embryology , Animals , Base Sequence , Cell Lineage , Ciona/growth & development , Ectoderm/embryology , Gonadotropin-Releasing Hormone/metabolism , Larva , Neural Crest/embryology , Neural Plate/cytology , Neural Plate/embryology , Single-Cell Analysis , Xenopus
4.
Proc Natl Acad Sci U S A ; 114(31): E6352-E6360, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28716930

ABSTRACT

The lateral neural plate border (NPB), the neural part of the vertebrate neural border, is composed of central nervous system (CNS) progenitors and peripheral nervous system (PNS) progenitors. In invertebrates, PNS progenitors are also juxtaposed to the lateral boundary of the CNS. Whether there are conserved molecular mechanisms determining vertebrate and invertebrate lateral neural borders remains unclear. Using single-cell-resolution gene-expression profiling and genetic analysis, we present evidence that orthologs of the NPB specification module specify the invertebrate lateral neural border, which is composed of CNS and PNS progenitors. First, like in vertebrates, the conserved neuroectoderm lateral border specifier Msx/vab-15 specifies lateral neuroblasts in Caenorhabditis elegans Second, orthologs of the vertebrate NPB specification module (Msx/vab-15, Pax3/7/pax-3, and Zic/ref-2) are significantly enriched in worm lateral neuroblasts. In addition, like in other bilaterians, the expression domain of Msx/vab-15 is more lateral than those of Pax3/7/pax-3 and Zic/ref-2 in C. elegans Third, we show that Msx/vab-15 regulates the development of mechanosensory neurons derived from lateral neural progenitors in multiple invertebrate species, including C. elegans, Drosophila melanogaster, and Ciona intestinalis We also identify a novel lateral neural border specifier, ZNF703/tlp-1, which functions synergistically with Msx/vab-15 in both C. elegans and Xenopus laevis These data suggest a common origin of the molecular mechanism specifying lateral neural borders across bilaterians.


Subject(s)
Caenorhabditis elegans/embryology , Ciona intestinalis/embryology , Drosophila melanogaster/embryology , Gene Expression Regulation, Developmental/physiology , Neural Crest/embryology , Neural Plate/embryology , Neural Stem Cells/metabolism , Xenopus laevis/embryology , Animals , Caenorhabditis elegans Proteins/metabolism , Carrier Proteins/metabolism , MSX1 Transcription Factor/metabolism , Paired Box Transcription Factors/metabolism , Peripheral Nervous System/cytology , Peripheral Nervous System/embryology , Single-Cell Analysis
SELECTION OF CITATIONS
SEARCH DETAIL