Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Cell ; 187(11): 2785-2800.e16, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38657604

ABSTRACT

Natural cell death pathways such as apoptosis and pyroptosis play dual roles: they eliminate harmful cells and modulate the immune system by dampening or stimulating inflammation. Synthetic protein circuits capable of triggering specific death programs in target cells could similarly remove harmful cells while appropriately modulating immune responses. However, cells actively influence their death modes in response to natural signals, making it challenging to control death modes. Here, we introduce naturally inspired "synpoptosis" circuits that proteolytically regulate engineered executioner proteins and mammalian cell death. These circuits direct cell death modes, respond to combinations of protease inputs, and selectively eliminate target cells. Furthermore, synpoptosis circuits can be transmitted intercellularly, offering a foundation for engineering synthetic killer cells that induce desired death programs in target cells without self-destruction. Together, these results lay the groundwork for programmable control of mammalian cell death.


Subject(s)
Cell Death , Humans , Apoptosis , Caspases/metabolism , HEK293 Cells , Proteolysis , Pyroptosis/drug effects , Synthetic Biology/methods , Cells, Cultured
2.
Cell ; 186(17): 3642-3658.e32, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37437570

ABSTRACT

A system for programmable export of RNA molecules from living cells would enable both non-destructive monitoring of cell dynamics and engineering of cells capable of delivering executable RNA programs to other cells. We developed genetically encoded cellular RNA exporters, inspired by viruses, that efficiently package and secrete cargo RNA molecules from mammalian cells within protective nanoparticles. Exporting and sequencing RNA barcodes enabled non-destructive monitoring of cell population dynamics with clonal resolution. Further, by incorporating fusogens into the nanoparticles, we demonstrated the delivery, expression, and functional activity of exported mRNA in recipient cells. We term these systems COURIER (controlled output and uptake of RNA for interrogation, expression, and regulation). COURIER enables measurement of cell dynamics and establishes a foundation for hybrid cell and gene therapies based on cell-to-cell delivery of RNA.


Subject(s)
Cytological Techniques , Genetic Techniques , RNA , Animals , Biological Transport , Mammals/metabolism , RNA/genetics , RNA/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Viruses/genetics , Molecular Typing , Sequence Analysis, RNA
3.
Cell ; 185(11): 1905-1923.e25, 2022 05 26.
Article in English | MEDLINE | ID: mdl-35523183

ABSTRACT

Tumor evolution is driven by the progressive acquisition of genetic and epigenetic alterations that enable uncontrolled growth and expansion to neighboring and distal tissues. The study of phylogenetic relationships between cancer cells provides key insights into these processes. Here, we introduced an evolving lineage-tracing system with a single-cell RNA-seq readout into a mouse model of Kras;Trp53(KP)-driven lung adenocarcinoma and tracked tumor evolution from single-transformed cells to metastatic tumors at unprecedented resolution. We found that the loss of the initial, stable alveolar-type2-like state was accompanied by a transient increase in plasticity. This was followed by the adoption of distinct transcriptional programs that enable rapid expansion and, ultimately, clonal sweep of stable subclones capable of metastasizing. Finally, tumors develop through stereotypical evolutionary trajectories, and perturbing additional tumor suppressors accelerates progression by creating novel trajectories. Our study elucidates the hierarchical nature of tumor evolution and, more broadly, enables in-depth studies of tumor progression.


Subject(s)
Neoplasms , Animals , Genes, ras , Mice , Neoplasms/genetics , Phylogeny , Exome Sequencing
4.
Cell ; 171(5): 1206-1220.e22, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-29149607

ABSTRACT

The definition of neuronal type and how it relates to the transcriptome are open questions. Drosophila olfactory projection neurons (PNs) are among the best-characterized neuronal types: different PN classes target dendrites to distinct olfactory glomeruli, while PNs of the same class exhibit indistinguishable anatomical and physiological properties. Using single-cell RNA sequencing, we comprehensively characterized the transcriptomes of most PN classes and unequivocally mapped transcriptomes to specific olfactory function for six classes. Transcriptomes of closely related PN classes exhibit the largest differences during circuit assembly but become indistinguishable in adults, suggesting that neuronal subtype diversity peaks during development. Transcription factors and cell-surface molecules are the most differentially expressed genes between classes and are highly informative in encoding cell identity, enabling us to identify a new lineage-specific transcription factor that instructs PN dendrite targeting. These findings establish that neuronal transcriptomic identity corresponds with anatomical and physiological identity defined by connectivity and function.


Subject(s)
Drosophila melanogaster/metabolism , Neurons/metabolism , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Animals , Brain/cytology , Brain/metabolism , Cluster Analysis , Dendrites/metabolism , Drosophila melanogaster/cytology , Drosophila melanogaster/growth & development , Gene Expression Profiling , Olfactory Bulb/cytology , Olfactory Bulb/metabolism , Organ Specificity , Pupa/cytology , Pupa/metabolism , Transcription Factors/metabolism
5.
Proc Natl Acad Sci U S A ; 116(4): 1261-1266, 2019 01 22.
Article in English | MEDLINE | ID: mdl-30622180

ABSTRACT

Antibodies are created and refined by somatic evolution in B cell populations, which endows the human immune system with the ability to recognize and eliminate diverse pathogens. However, the evolutionary processes that sculpt antibody repertoires remain poorly understood. Here, using an unbiased repertoire-scale approach, we show that the population genetic signatures of evolution are evident in human B cell lineages and reveal how antibodies evolve somatically. We measured the dynamics and genetic diversity of B cell responses in five adults longitudinally before and after influenza vaccination using high-throughput antibody repertoire sequencing. We identified vaccine-responsive B cell lineages that carry signatures of selective sweeps driven by positive selection, and discovered that they often display evidence for selective sweeps favoring multiple subclones. We also found persistent B cell lineages that exhibit stable population dynamics and carry signatures of neutral drift. By exploiting the relationship between B cell fitness and antibody binding affinity, we demonstrate the potential for using phylogenetic approaches to identify antibodies with high binding affinity. This quantitative characterization reveals that antibody repertoires are shaped by an unexpectedly broad spectrum of evolutionary processes and shows how signatures of evolutionary history can be harnessed for antibody discovery and engineering.


Subject(s)
Antibodies/genetics , Selection, Genetic/genetics , Adult , B-Lymphocytes/physiology , Cell Lineage/genetics , Evolution, Molecular , Genetic Variation/genetics , Genetics, Population/methods , Humans , Longitudinal Studies , Phylogeny , Vaccination/methods
6.
Life Sci Alliance ; 6(3)2023 03.
Article in English | MEDLINE | ID: mdl-36639222

ABSTRACT

We combined single-cell transcriptomics and lineage tracing to understand fate choice in human B cells. Using the antibody sequences of B cells, we tracked clones during in vitro differentiation. Clonal analysis revealed a subset of IgM+ B cells which were more proliferative than other B-cell types. Whereas the population of B cells adopted diverse states during differentiation, clones had a restricted set of fates available to them; there were two times more single-fate clones than expected given population-level cell-type diversity. This implicated a molecular memory of initial cell states that was propagated through differentiation. We then identified the genes which had strongest coherence within clones. These genes significantly overlapped known B-cell fate determination programs, suggesting the genes which determine cell identity are most robustly controlled on a clonal level. Persistent clonal identities were also observed in human plasma cells from bone marrow, indicating that these transcriptional programs maintain long-term cell identities in vivo. Thus, we show how cell-intrinsic fate bias influences differentiation outcomes in vitro and in vivo.


Subject(s)
B-Lymphocytes , Immunoglobulins , Humans , Cell Differentiation/genetics , Bone Marrow , Clone Cells
7.
Science ; 380(6640): eadc9498, 2023 04 07.
Article in English | MEDLINE | ID: mdl-37023193

ABSTRACT

Despite the vast diversity of the antibody repertoire, infected individuals often mount antibody responses to precisely the same epitopes within antigens. The immunological mechanisms underpinning this phenomenon remain unknown. By mapping 376 immunodominant "public epitopes" at high resolution and characterizing several of their cognate antibodies, we concluded that germline-encoded sequences in antibodies drive recurrent recognition. Systematic analysis of antibody-antigen structures uncovered 18 human and 21 partially overlapping mouse germline-encoded amino acid-binding (GRAB) motifs within heavy and light V gene segments that in case studies proved critical for public epitope recognition. GRAB motifs represent a fundamental component of the immune system's architecture that promotes recognition of pathogens and leads to species-specific public antibody responses that can exert selective pressure on pathogens.


Subject(s)
Amino Acid Motifs , Antibody Formation , Host-Pathogen Interactions , Immunodominant Epitopes , Immunoglobulin Heavy Chains , Immunoglobulin Light Chains , Animals , Humans , Mice , Germ Cells , Immunodominant Epitopes/chemistry , Immunodominant Epitopes/genetics , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Light Chains/genetics , Immunoglobulin Light Chains/immunology , Epitope Mapping , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology
8.
Elife ; 102021 01 11.
Article in English | MEDLINE | ID: mdl-33427646

ABSTRACT

Neurons undergo substantial morphological and functional changes during development to form precise synaptic connections and acquire specific physiological properties. What are the underlying transcriptomic bases? Here, we obtained the single-cell transcriptomes of Drosophila olfactory projection neurons (PNs) at four developmental stages. We decoded the identity of 21 transcriptomic clusters corresponding to 20 PN types and developed methods to match transcriptomic clusters representing the same PN type across development. We discovered that PN transcriptomes reflect unique biological processes unfolding at each stage-neurite growth and pruning during metamorphosis at an early pupal stage; peaked transcriptomic diversity during olfactory circuit assembly at mid-pupal stages; and neuronal signaling in adults. At early developmental stages, PN types with adjacent birth order share similar transcriptomes. Together, our work reveals principles of cellular diversity during brain development and provides a resource for future studies of neural development in PNs and other neuronal types.


Subject(s)
Drosophila melanogaster/metabolism , Neurites/metabolism , Olfactory Nerve/metabolism , Transcriptome , Animals , Single-Cell Analysis , Time Factors
9.
Elife ; 102021 02 08.
Article in English | MEDLINE | ID: mdl-33555999

ABSTRACT

Recognition of environmental cues is essential for the survival of all organisms. Transcriptional changes occur to enable the generation and function of the neural circuits underlying sensory perception. To gain insight into these changes, we generated single-cell transcriptomes of Drosophila olfactory- (ORNs), thermo-, and hygro-sensory neurons at an early developmental and adult stage using single-cell and single-nucleus RNA sequencing. We discovered that ORNs maintain expression of the same olfactory receptors across development. Using receptor expression and computational approaches, we matched transcriptomic clusters corresponding to anatomically and physiologically defined neuron types across multiple developmental stages. We found that cell-type-specific transcriptomes partly reflected axon trajectory choices in development and sensory modality in adults. We uncovered stage-specific genes that could regulate the wiring and sensory responses of distinct ORN types. Collectively, our data reveal transcriptomic features of sensory neuron biology and provide a resource for future studies of their development and physiology.


Subject(s)
Drosophila melanogaster/cytology , Drosophila melanogaster/genetics , Olfactory Receptor Neurons/metabolism , Animals , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/growth & development , Drosophila melanogaster/physiology , Female , Male , Sequence Analysis, RNA , Single-Cell Analysis , Smell , Transcriptome
10.
PLoS One ; 15(8): e0236477, 2020.
Article in English | MEDLINE | ID: mdl-32756607

ABSTRACT

Antibodies function by binding to antigens. Antibodies must be cloned and expressed to determine their binding characteristics, but current methods for high-throughput antibody sequencing yield antibody DNA pooled from many cells and do not readily permit cloning of antibodies from single B cells. We present a strategy for retrieving and cloning antibody DNA from single cells within a pooled library of cells. Our strategy, called selective PCR for antibody retrieval (SPAR), takes advantage of the unique sequence barcodes attached to individual cDNA molecules during sample preparation to enable specific amplification by PCR of antibody heavy- and light-chain cDNA originating from a single cell. We show through computational analysis that most human antibodies sequenced using typical high-throughput methods can be retrieved using SPAR, and experimentally demonstrate retrieval of full-length antibody variable region cDNA from three cells within pools of ~5,000 cells. SPAR enables rapid low-cost cloning and expression of native human antibodies from pooled single-cell sequence libraries for functional characterization.


Subject(s)
Antibodies/genetics , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Variable Region/genetics , Polymerase Chain Reaction/methods , Amino Acid Sequence/genetics , Cell Surface Display Techniques , Cloning, Molecular , DNA, Complementary/genetics , Gene Library , Genetic Vectors/genetics , Humans , Single-Cell Analysis
11.
Cell Rep ; 30(3): 905-913.e6, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31968262

ABSTRACT

Antibody memory protects humans from many diseases. Protective antibody memory responses require activation of transcriptional programs, cell proliferation, and production of antigen-specific antibodies, but how these aspects of the response are coordinated is poorly understood. We profile the molecular and cellular features of the antibody response to influenza vaccination by integrating single-cell transcriptomics, longitudinal antibody repertoire sequencing, and antibody binding measurements. Single-cell transcriptional profiling reveals a program of memory B cell activation characterized by CD11c and T-bet expression associated with clonal expansion and differentiation toward effector function. Vaccination elicits an antibody clone, which rapidly acquired broad high-affinity hemagglutinin binding during affinity maturation. Unexpectedly, many antibody clones elicited by vaccination do not bind vaccine, demonstrating non-specific activation of bystander antibodies by influenza vaccination. These results offer insight into how molecular recognition, transcriptional programs, and clonal proliferation are coordinated in the human B cell repertoire during memory recall.


Subject(s)
Antibodies, Viral/immunology , B-Lymphocytes/immunology , Bystander Effect/immunology , Immunologic Memory , Influenza, Human/immunology , Lymphocyte Activation/immunology , Single-Cell Analysis , Transcriptome/genetics , Adolescent , Clone Cells , Gene Expression Regulation , Humans , Immunologic Memory/genetics , Influenza Vaccines/immunology , Influenza, Human/blood , Phenotype , Population Dynamics , Transcription, Genetic , Vaccination
12.
Curr Biol ; 30(7): 1189-1198.e5, 2020 04 06.
Article in English | MEDLINE | ID: mdl-32059767

ABSTRACT

The regulatory mechanisms by which neurons coordinate their physiology and connectivity are not well understood. The Drosophila olfactory receptor neurons (ORNs) provide an excellent system to investigate this question. Each ORN type expresses a unique olfactory receptor, or a combination thereof, and sends their axons to a stereotyped glomerulus. Using single-cell RNA sequencing, we identified 33 transcriptomic clusters for ORNs and mapped 20 to their glomerular types, demonstrating that transcriptomic clusters correspond well with anatomically and physiologically defined ORN types. Each ORN type expresses hundreds of transcription factors. Transcriptome-instructed genetic analyses revealed that (1) one broadly expressed transcription factor (Acj6) only regulates olfactory receptor expression in one ORN type and only wiring specificity in another type, (2) one type-restricted transcription factor (Forkhead) only regulates receptor expression, and (3) another type-restricted transcription factor (Unplugged) regulates both events. Thus, ORNs utilize diverse strategies and complex regulatory networks to coordinate their physiology and connectivity.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Forkhead Transcription Factors/genetics , Homeodomain Proteins/genetics , Nerve Tissue Proteins/genetics , Olfactory Receptor Neurons/physiology , POU Domain Factors/genetics , Receptors, Odorant/genetics , Transcriptome , Animals , Axons/physiology , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Forkhead Transcription Factors/metabolism , Homeodomain Proteins/metabolism , Nerve Tissue Proteins/metabolism , POU Domain Factors/metabolism , Receptors, Odorant/metabolism , Single-Cell Analysis , Smell/physiology
13.
Genome Biol Evol ; 9(2): 363-371, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28164239

ABSTRACT

Transposable elements (TEs) are selfish, autonomously replicating DNA sequences that constitute a major component of eukaryotic genomes and contribute to genome evolution through their movement and amplification. Many fungal genomes, including the anther-smut fungi in the basidiomycete genus Microbotryum, have genome defense mechanisms, such as repeat-induced point mutation (RIP), which hypermutate repetitive DNA and limit TE activity. Little is known about how hypermutation affects the tempo of TE activity and their sequence evolution. Here we report the identification of a massive burst-like expansion of Gypsy-like retrotransposons in a strain of Microbotryum. This TE expansion evidently occurred in the face of RIP-like hypermutation activity. By examining the fitness of individual TE insertion variants, we found that RIP-like mutations impair TE fitness and limit proliferation. Our results provide evidence for a punctuated pattern of TE expansion in a fungal genome, similar to that observed in animals and plants. While targeted hypermutation is often thought of as an effective protection against mobile element activity, our findings suggest that active TEs can persist and undergo selection while they proliferate in genomes that have RIP-like defenses.


Subject(s)
Basidiomycota/genetics , DNA Repeat Expansion , Transcription Factors/genetics , Mutation Rate , Point Mutation , Recombinant Proteins/genetics
14.
Elife ; 52016 08 02.
Article in English | MEDLINE | ID: mdl-27481325

ABSTRACT

Antibody class switching is a feature of the adaptive immune system which enables diversification of the effector properties of antibodies. Even though class switching is essential for mounting a protective response to pathogens, the in vivo patterns and lineage characteristics of antibody class switching have remained uncharacterized in living humans. Here we comprehensively measured the landscape of antibody class switching in human adult twins using antibody repertoire sequencing. The map identifies how antibodies of every class are created and delineates a two-tiered hierarchy of class switch pathways. Using somatic hypermutations as a molecular clock, we discovered that closely related B cells often switch to the same class, but lose coherence as somatic mutations accumulate. Such correlations between closely related cells exist when purified B cells class switch in vitro, suggesting that class switch recombination is directed toward specific isotypes by a cell-autonomous imprinted state.


Subject(s)
B-Lymphocytes/immunology , Immunoglobulin Class Switching , Immunoglobulin Isotypes/genetics , Immunologic Factors/genetics , Humans , Recombination, Genetic , Sequence Analysis, DNA , Somatic Hypermutation, Immunoglobulin
15.
Evolution ; 68(1): 176-89, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24372603

ABSTRACT

Theory indicates that spatial scale and habitat configuration are fundamental for coevolutionary dynamics and how diversity is maintained in host-pathogen interactions. Yet, we lack empirical data to translate the theory to natural host-parasite systems. In this study, we conduct a multiscale cross-inoculation study using the specialist wild plant pathogen Podosphaera plantaginis on its host plant Plantago lanceolata. We apply the same sampling scheme to a region with highly fragmented (Åland) and continuous (Saaremaa) host populations. Although theory predicts higher parasite virulence in continuous regions, we did not detect differences in traits conferring virulence among the regions. Patterns of adaptation were highly scale dependent. We detected parasite maladaptation among regions, and among populations separated by intermediate distances (6.0-40.0 km) within the fragmented region. In contrast, parasite performance did not vary significantly according to host origin in the continuous landscape. For both regions, differentiation among populations was much larger for genetic variation than for phenotypic variation, indicating balancing selection maintaining phenotypic variation within populations. Our findings illustrate the critical role of spatial scale and habitat configuration in driving host-parasite coevolution. The absence of more aggressive strains in the continuous landscape, in contrast to theoretical predictions, has major implications for long-term decision making in conservation, agriculture, and public health.


Subject(s)
Adaptation, Physiological/genetics , Ascomycota/genetics , Ecosystem , Evolution, Molecular , Genetic Variation , Ascomycota/pathogenicity , Host-Pathogen Interactions/genetics , Plantago/genetics , Plantago/microbiology , Quantitative Trait, Heritable , Virulence/genetics
16.
Ecol Evol ; 2(7): 1705-11, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22957174

ABSTRACT

THE UBIQUITOUS CHALLENGE FROM INFECTIOUS DISEASE HAS PROMPTED THE EVOLUTION OF DIVERSE HOST DEFENSES, WHICH CAN BE DIVIDED INTO TWO BROAD CLASSES: resistance (which limits pathogen growth and infection) and tolerance (which does not limit infection, but instead reduces or offsets its negative fitness consequences). Resistance and tolerance may provide equivalent short-term benefits, but have fundamentally different epidemiological consequences and thus exhibit different evolutionary behaviors. We consider the evolution of resistance and tolerance in a spatially structured population using a stochastic simulation model. We show that tolerance can invade a population of susceptible individuals (i.e., neither resistant nor tolerant) with higher cost than resistance, even though they each provide equivalent direct benefits to the host, because tolerant hosts impose higher disease burden upon vulnerable competitors. However, in spatially structured settings, tolerance can invade a population of resistant hosts only with lower cost than resistance due to spatial genetic structure and the higher local incidence of disease around invading tolerant individuals. The evolution of tolerance is therefore constrained by spatial genetic structure in a manner not previously revealed by nonspatially explicit models, suggesting mechanisms that could maintain variation or limit the occurrence of tolerance relative to resistance.

17.
Genome Biol Evol ; 4(3): 240-7, 2012.
Article in English | MEDLINE | ID: mdl-22250128

ABSTRACT

Transposable elements (TEs) are ubiquitous genomic parasites that have prompted the evolution of genome defense systems that restrict their activity. Repeat-induced point mutation (RIP) is a homology-dependent genome defense that introduces C-to-T transition mutations in duplicated DNA sequences and is thought to control the proliferation of selfish repetitive DNA. Here, we determine the taxonomic distribution of hypermutation patterns indicative of RIP among basidiomycetes. We quantify C-to-T transition mutations in particular di- and trinucleotide target sites for TE-like sequences from nine fungal genomes. We find evidence of RIP-like patterns of hypermutation at TpCpG trinucleotide sites in repetitive sequences from all species of the Pucciniomycotina subphylum of the Basidiomycota, Microbotryum lychnidis-dioicae, Puccinia graminis, Melampsora laricis-populina, and Rhodotorula graminis. In contrast, we do not find evidence for RIP-like hypermutation in four species of the Agaricomycotina and Ustilaginomycotina subphyla of the Basidiomycota. Our results suggest that a RIP-like process and the specific nucleotide context for mutations are conserved within the Pucciniomycotina subphylum. These findings imply that coevolutionary interactions between TEs and a hypermutating genome defense are stable over long evolutionary timescales.


Subject(s)
Basidiomycota/genetics , DNA Transposable Elements/genetics , Point Mutation/genetics , Evolution, Molecular , Genome, Fungal/genetics
SELECTION OF CITATIONS
SEARCH DETAIL