Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Med Phys ; 47(2): 352-362, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31724177

ABSTRACT

PURPOSE: Surface-guided radiation therapy (SGRT) is a nonionizing imaging approach for patient setup guidance, intra-fraction monitoring, and automated breath-hold gating of radiation treatments. SGRT employs the premise that the external patient surface correlates to the internal anatomy, to infer the treatment isocenter position at time of treatment delivery. Deformations and posture variations are known to impact the correlation between external and internal anatomy. However, the degree, magnitude, and algorithm dependence of this impact are not intuitive and currently no methods exist to assess this relationship. The primary aim of this work was to develop a framework to investigate and understand how a commercial optical surface imaging system (C-RAD, Uppsala, Sweden), which uses a nonrigid registration algorithm, handles rotations and surface deformations. METHODS: A workflow consisting of a female torso phantom and software-introduced transformations to the corresponding digital reference surface was developed. To benchmark and validate the approach, known rigid translations and rotations were first applied. Relevant breast radiotherapy deformations related to breast size, hunching/arching back, distended/deflated abdomen, and an irregular surface to mimic a cover sheet over the lower part of the torso were investigated. The difference between rigid and deformed surfaces was evaluated as a function of isocenter location. RESULTS: For all introduced rigid body transformations, C-RAD computed isocenter shifts were determined within 1 mm and 1˚. Additional translational shifts to correct for rotations as a function of isocenter location were determined with the same accuracy. For yaw setup errors, the difference in shift corrections between a plan with an isocenter placed in the center of the breast (BrstIso) and one located 12 cm superiorly (SCFIso) was 2.3 mm/1˚ in lateral direction. Pitch setup errors resulted in a difference of 2.1 mm/1˚ in vertical direction. For some of the deformation scenarios, much larger differences up to 16 mm and 7˚ in the calculated shifts between BrstIso and SCFIso were observed that could lead to large unintended gaps or overlap between adjacent matched fields if uncorrected. CONCLUSIONS: The methodology developed lends itself well for quality assurance (QA) of SGRT systems. The deformable C-RAD algorithm determined accurate shifts for rigid transformations, and this was independent of isocenter location. For surface deformations, the position of the isocenter had considerable impact on the registration result. It is recommended to avoid off-axis isocenters during treatment planning to optimally utilize the capabilities of the deformable image registration algorithm, especially when multiple isocenters are used with fields that share a field edge.


Subject(s)
Brachytherapy/methods , Breast/metabolism , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Image-Guided/methods , Algorithms , Computer Simulation , Female , Humans , Phantoms, Imaging , Quality Control , Reproducibility of Results , Surface Properties
2.
Phys Med ; 60: 174-181, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31000080

ABSTRACT

PURPOSE: To characterize reproducibility of patient breath-hold positioning and compare tracking system performance for Deep Inspiration Breath Hold (DIBH) gated left breast radiotherapy. METHODS: 29 consecutive left breast DIBH patients (655 fractions) were treated under the guidance of Calypso surface beacons with audio-feedback and 35 consecutive patients (631 fractions) were treated using C-RAD Catalyst HD surface imaging with audiovisual feedback. The Calypso system tracks a centroid determined by two radio-frequency transponders, with a manually enforced institutional tolerance, while the surface image based CatalystHD system utilizes real-time biometric feedback to track a pre-selected point with an institutional tolerance enforced by the Elekta Response gating interface. DIBH motion data from Calypso was extracted to obtain the displacement of breath hold marker in ant/post direction from a set-zero reference point. Ant/post point displacement data from CatalystHD was interpreted by computing the difference between raw tracking points and the center of individual gating windows. Mean overall errors were compared using Welsh's unequal variance t-test. Wilcoxon rank sum test were used for statistical analysis with P < 0.05 considered significant. RESULTS: Mean overall error for Calypso and CatalystHD were 0.33 ±â€¯1.17 mm and 0.22 ±â€¯0.43 mm, respectively, with t-test comparison P-value < 0.034. Absolute errors for Calypso and CatalystHD were 0.95 ±â€¯0.75 mm and 0.38 ±â€¯0.30 mm, respectively, with Wilcoxon rank sum test P-value <2×10-16. Average standard deviation per fraction was found to be 0.74 ±â€¯0.44 mm for Calypso patients versus 0.54 ±â€¯0.22 mm for CatalystHD. CONCLUSION: Reduced error distribution widths in overall positioning, deviation of position, and per fraction deviation suggest that the use of functionalities available in CatalystHD such as audiovisual biofeedback and patient surface matching improves accuracy and stability during DIBH gated left breast radiotherapy.


Subject(s)
Breast Neoplasms/radiotherapy , Breast/diagnostic imaging , Breath Holding , Patient Positioning , Radiotherapy, Image-Guided/methods , Algorithms , Biometry/methods , Breast/physiopathology , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/physiopathology , Feedback , Humans , Inhalation , Motion , Patient Positioning/methods , Radiotherapy Planning, Computer-Assisted/instrumentation , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Image-Guided/instrumentation , Reproducibility of Results , Retrospective Studies , Wireless Technology
SELECTION OF CITATIONS
SEARCH DETAIL