Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Int J Hyperthermia ; 38(1): 1415-1424, 2021.
Article in English | MEDLINE | ID: mdl-34581259

ABSTRACT

PURPOSE: Recommended treatments for muscle-invasive bladder cancer (MIBC) come with considerable morbidity. Hyperthermia (HT) triggered drug release from phosphatidylglycerol-based thermosensitive liposomes (DPPG2-TSL) might prevent surgical bladder removal and toxicity from systemic chemotherapy. We aimed to assess the efficacy of DPPG2-TSL with HT in a syngeneic orthotopic rat urothelial carcinoma model. METHODS: A total of 191 female Fischer F344 rats were used. Bladder tumors were initiated by inoculation of AY-27 cells and tumor-bearing rats were selected with cystoscopy and semi-randomized over treatment groups. On days 5 and 8, animals were treated with DOX in different treatment modalities: intravenous (iv) DPPG2-TSL-DOX with HT, iv free DOX without HT, intravesical DOX without HT, intravesical DOX with HT or no treatment (control group), respectively. Animals were euthanized on day 14 and complete tumor response was assessed by histopathological evaluation. RESULTS: Iv DPPG2-TSL-DOX + HT resulted in a favorable rate of animals with complete tumor response (70%), compared to iv free DOX (18%, p = .02), no treatment (0%, p = .001), and intravesical DOX with (43%, p = .35) or without HT (50%, p = .41). All rats receiving intravesical DOX with HT and 24% of rats treated with DPPG2-TSL-DOX containing the same DOX dose with HT had to be euthanized before day 14 because of substantial bodyweight loss, which was associated with dilated ureters urine retention in a few rats. CONCLUSION: Treatment with DPPG2-TSL-DOX combined with intravesical HT outperformed systemic and intravesical DOX in vivo. There might be a role for DPPG2-TSL encapsulating chemotherapeutics in the treatment of MIBC in the future.


Subject(s)
Carcinoma, Transitional Cell , Hyperthermia, Induced , Urinary Bladder Neoplasms , Animals , Cell Line, Tumor , Doxorubicin/therapeutic use , Drug Delivery Systems , Female , Liposomes , Muscles , Phosphatidylglycerols , Rats , Rats, Inbred F344 , Urinary Bladder Neoplasms/drug therapy
2.
Int J Hyperthermia ; 33(2): 178-190, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27592502

ABSTRACT

PURPOSE: Doxorubicin (DOX)-loaded phosphatidyldiglycerol-based thermosensitive liposomes (DPPG2-TSL-DOX) combined with local hyperthermia (HT) was evaluated in cats with locally advanced spontaneous fibrosarcomas (soft tissue sarcoma [STS]). The study was designed to evaluate the safety and pharmacokinetic profile of the drug. Results from four dose-levels are reported. METHODS: Eleven client-owned cats with advanced STS were enrolled. Five cats received escalating doses of 0.1-0.4 mg/kg DOX (group I), three received 0.4 mg/kg constantly (group II) and three 0.6 mg/kg (group III) IV over 15 min. HT with a target temperature of 41.5 °C was started 15 min before drug application and continued for a total of 60 min. Six HT treatments were applied every other week using a radiofrequency applicator. Tumour growth was monitored by magnetic resonance imaging (MRI) and for dose level III also with 18F-FDG PET. RESULTS: Treatment was generally well tolerated and reasons for premature study termination in four cats were not associated with drug-induced toxicity. No DPPG2-TSL-DOX based hypersensitivity reaction was observed. One cat showed simultaneous partial response (PR) in MRI and positron emission tomography (PET) whereas one cat showed stable disease in MRI and PR in PET (both cats in dose level III). Pharmacokinetic measurements demonstrated DOX release triggered by HT. CONCLUSION: DPPG2-TSL-DOX + HT is a promising treatment option for advanced feline STS by means of targeted drug delivery. As MTD was not reached further investigation is warranted to determine if higher doses would result in even better tumour responses.

3.
Pharm Res ; 31(9): 2276-86, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24599802

ABSTRACT

PURPOSE: The pyrimidine analogue gemcitabine (dFdC) is frequently used in the treatment of patients with solid tumors. However, after i.v. application dFdC is rapidly inactivated by metabolization. Here, the potential of thermosensitive liposomes based on 1,2-dipalmitoyl-sn-glycero-3-phosphodiglycerol (DPPG2-TSL) were investigated as carrier and targeting system for delivery of dFdC in combination with local hyperthermia (HT). METHODS: DPPG2-TSL were prepared by the lipid film hydration and extrusion method and characterized by dynamic light scattering, thin layer chromatography, phosphate assay and HPLC. In vivo experiments were performed in Brown Norway rats with a syngeneic soft tissue sarcoma. Local HT treatment was performed by light exposure. RESULTS: DPPG2-TSL were stable at 37°C in serum and showed a temperature dependent dFdC release >40°C. Plasma half-life of dFdC was strongly increased from 0.07 h (non-liposomal) to 0.53 h (liposomal, vesicle size 105 nm) or 2.59 h (liposomal, 129 nm). Therapy of BN175 tumors with dFdC encapsulated in DPPG2-TSL + HT showed significant improvement in tumor growth delay compared to non-liposomal dFdC without HT (p < 0.05), non-liposomal dFdC with HT (p < 0.01), and liposomal dFdC without HT (p < 0.05), respectively. CONCLUSIONS: Gemcitabine encapsulated in DPPG2-TSL in combination with local HT is a promising tool for the treatment of solid tumors. Therefore, these encouraging results ask for further investigation and evaluation.


Subject(s)
Antimetabolites, Antineoplastic/administration & dosage , Delayed-Action Preparations/chemistry , Deoxycytidine/analogs & derivatives , Hyperthermia, Induced , Liposomes/chemistry , Sarcoma/therapy , Animals , Antimetabolites, Antineoplastic/pharmacokinetics , Antimetabolites, Antineoplastic/therapeutic use , Cell Line, Tumor , Deoxycytidine/administration & dosage , Deoxycytidine/pharmacokinetics , Deoxycytidine/therapeutic use , Doxorubicin , Half-Life , Male , Phosphatidylglycerols/chemistry , Rats , Sarcoma/drug therapy , Sarcoma/pathology , Gemcitabine
4.
J Pharm Sci ; 112(7): 1947-1956, 2023 07.
Article in English | MEDLINE | ID: mdl-37030437

ABSTRACT

Dexamethasone (DXM) is a potent glucocorticoid with an anti-inflammatory and anti-angiogenic activity which is widely clinically used. Systemic side effects limit the long-term use of DXM in patients requiring formulations which deliver and selectively release the drug to the diseased tissues. This in vitro study compares the suitability of DXM and commonly used prodrugs dexamethasone-21-phosphate (DXMP) and dexamethasone-21-palmitate (DP) as well as DXM complexed by 2-hydroxypropyl-γ-cyclodextrin (HP-γ-CD) for the use in thermosensitive liposomes (TSL). DXM showed a poor retention and a low final drug:lipid ratio in a 1,2-dipalmitoyl-sn­glycero-3-phosphodiglycerol-based TSL (DPPG2-TSL) and a low-temperature sensitive liposome (LTSL). In contrast to DXM, DXMP and DP were stably retained at 37 °C in TSL in serum and could be encapsulated with high drug:lipid ratios in DPPG2-TSL and LTSL. DXMP showed a rapid release at mild hyperthermia (HT) from both TSL in serum, whereas DP remained incorporated in the TSL bilayer. According to release experiments with carboxyfluorescein (CF), HP-γ-CD and 2-hydroxypropyl-ß-cyclodextrin (HP-ß-CD) are suitable vehicles for the loading of DXM into DPPG2-TSL and LTSL. Complexation of DXM with HP-γ-CD increased the aqueous solubility of the drug leading to approx. ten times higher DXM:lipid ratio in DPPG2-TSL and LTSL in comparison to un-complexed DXM. Both DXM and HP-γ-CD showed increased release at HT in comparison to 37 °C in serum. In conclusion, DXMP and DXM complexed by HP-γ-CD represent promising candidates for TSL delivery.


Subject(s)
Hyperthermia, Induced , Prodrugs , Humans , Liposomes , Hot Temperature , Excipients , Doxorubicin/therapeutic use , Lipids , Dexamethasone
5.
J Control Release ; 343: 798-812, 2022 03.
Article in English | MEDLINE | ID: mdl-35134460

ABSTRACT

PURPOSE: Encapsulation of cytotoxic drugs for a localized release is an effective way to increase the therapeutic window of such agents. In this article we present the localized release of doxorubicin (DOX) from phosphatidyldiglycerol (DPPG2) based thermosensitive liposomes using MR-HIFU mediated hyperthermia in a swine model. MATERIALS AND METHODS: German landrace pigs of weights between 37.5 and 53.5 kg received a 30-min infusion of DOX containing thermosensitive liposomes (50 mg DOX/m2). The pigs' biceps femoris was treated locally in two separate target areas with mild hyperthermia using magnetic resonance guided high intensity focused ultrasound, starting 10 min and 60 min after initiation of the infusion, respectively. The pharmacokinetics and biodistribution of DOX were determined and an analysis of the treatment parameters' influence was performed. RESULTS: Compared to untreated tissue, we found a 15-fold and a 7-fold increase in DOX concentration in the muscle volumes that had undergone hyperthermia starting 10 min and 60 min after the beginning of the infusion, respectively. The pharmacokinetic analysis showed a prolonged circulation time of DOX and a correlation between the AUC of extra-liposomal DOX in the bloodstream and the amount of DOX accumulated in the target tissue. CONCLUSIONS: We have demonstrated a workflow for MR-HIFU hyperthermia drug delivery that can be adapted to a clinical setting, showing that HIFU-hyperthermia is a suitable method for local drug release of DOX using DPPG2 based thermosensitive liposomes in stationary targets. Using the developed pharmacokinetic model, an optimization of the drug quantity deposited in the target via the timing of infusion and hyperthermia should be possible.


Subject(s)
High-Intensity Focused Ultrasound Ablation , Hyperthermia, Induced , Animals , Antibiotics, Antineoplastic , Doxorubicin , Drug Delivery Systems/methods , High-Intensity Focused Ultrasound Ablation/methods , Hyperthermia, Induced/methods , Liposomes , Swine , Tissue Distribution
6.
Int J Nanomedicine ; 16: 4045-4061, 2021.
Article in English | MEDLINE | ID: mdl-34163158

ABSTRACT

PURPOSE: Previous studies demonstrated the possibility of targeting tumor-angiogenic endothelial cells with positively charged nanocarriers, such as cationic liposomes. We investigated the active targeting potential of positively charged nanoparticles in combination with the heat-induced drug release function of thermosensitive liposomes (TSL). This novel dual-targeted approach via cationic TSL (CTSL) was thoroughly explored using either a novel synthetic phospholipid 1,2-dipalmitoyl-sn-glycero-3-phosphodiglycerol (DPPG2) or a conventional polyethylene glycol (PEG) surface modification. Anionic particles containing either DPPG2 or PEG were also included in the study to highlight difference in tumor enrichment driven by surface charge. With this study, we aim to provide a deep insight into the main differences between DPPG2- and PEG-functionalized liposomes, focusing on the delivery of a well-known cytotoxic drug (doxorubicin; DOX) in combination with local hyperthermia (HT, 41-43°C). MATERIALS AND METHODS: DPPG2- and PEG-based cationic TSLs (PG2-CTSL/PEG-CTSL) were thoroughly analyzed for size, surface charge, and heat-triggered DOX release. Cancer cell targeting and DOX delivery was evaluated by FACS, fluorescence imaging, and HPLC. In vivo particle behavior was analyzed by assessing DOX biodistribution with local HT application in tumor-bearing animals. RESULTS: The absence of PEG in PG2-CTSL promoted more efficient liposome-cell interactions, resulting in a higher DOX delivery and cancer cell toxicity compared with PEG-CTSL. By exploiting the dual-targeting function of CTSLs, we were able to selectively trigger DOX release in the intracellular compartment by HT. When tested in vivo, local HT promoted an increase in intratumoral DOX levels for all (C)TSLs tested, with DOX enrichment factors ranging from 3 to 14-fold depending on the type of formulation. CONCLUSION: Cationic particles showed lower hemocompatibility than their anionic counterparts, which was partially mitigated when PEG was grafted on the liposome surface. DPPG2-based anionic TSL showed optimal local drug delivery compared to all other formulations tested, demonstrating the potential advantages of using DPPG2 lipid in designing liposomes for tumor-targeted applications.


Subject(s)
Cell Communication , Drug Delivery Systems , Neoplasms/drug therapy , Phosphatidylglycerols/chemistry , Polyethylene Glycols/chemistry , Temperature , Animals , Cell Communication/drug effects , Cell Line, Tumor , Doxorubicin/pharmacokinetics , Doxorubicin/pharmacology , Drug Liberation , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Inhibitory Concentration 50 , Intracellular Space/metabolism , Liposomes , Polyethylene Glycols/administration & dosage , Rats , Surface Properties , Tissue Distribution/drug effects
7.
Biochim Biophys Acta Biomembr ; 1863(11): 183698, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34283999

ABSTRACT

Hexadecylphosphocholine (HePC, Miltefosine) is a drug from the class of alkylphosphocholines with an antineoplastic and antiprotozoal activity. We previously reported that HePC uptake from thermosensitive liposomes (TSL) containing 1,2-dipalmitoyl-sn-glycero-3-phosphodiglycerol (DPPG2) into cancer cells is accelerated at mild hyperthermia (HT) resulting in increased cytotoxicity. In this study, we compared HePC release of different TSL formulations in serum. HePC showed rapid but incomplete release below the transition temperature (Tm) of investigated TSL formulations in serum. Short heating (5 min) to 42 °C increased HePC release from DPPG2-TSL (Tm = 41 °C) by a factor of two in comparison to body temperature (37 °C). Bovine serum albumin (BSA) induced HePC release from DPPG2-TSL comparable to serum. Furthermore, multilamellar vesicles (MLV) were capable to extract HePC from DPPG2-TSL in a concentration- and temperature-dependent manner. Repetitive exposure of DPPG2-TSL to MLV at 37 °C led to a fast initial release of HePC which slowed down after subsequent extraction cycles finally reaching approx. 50% HePC release. A pharmacokinetic study in rats revealed a biphasic pattern with an immediate clearance of approx. 50% HePC whereas the remaining 50% HePC showed a prolonged circulation time. We speculate that HePC located in the external leaflet of DPPG2-TSL is rapidly released upon contact with suitable biological acceptors. As demonstrated by MLV transfer experiments, asymmetric incorporation of HePC into the internal leaflet of DPPG2-TSL might improve HePC retention in presence of complex biological media and still give rise to HT-induced HePC release.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Liposomes , Phosphatidylglycerols/chemistry , Phosphorylcholine/analogs & derivatives , Animals , Antineoplastic Agents/pharmacology , Calorimetry, Differential Scanning , Chromatography, Liquid/methods , Hemolysis/drug effects , Humans , Male , Phosphorylcholine/pharmacokinetics , Phosphorylcholine/pharmacology , Rats , Tandem Mass Spectrometry/methods , Temperature
8.
J Control Release ; 333: 1-15, 2021 05 10.
Article in English | MEDLINE | ID: mdl-33741385

ABSTRACT

Various thermosensitive liposome (TSL) formulations have been described to date and it is currently unclear which are optimal for solid tumor treatment. Sufficient circulation half-life is important and most liposomes obtain this by polyethylene glycol (PEG) surface modification. 1,2-dipalmitoyl-sn-glycero-3-phosphodiglycerol (DPPG2) has been described as a promising alternative which increases TSL circulation half-life and facilitates rapid drug release under mild hyperthermia at 20-30 mol%. The present work describes an investigation of the DPPG2-TSL protein corona, blood cell interactions, complement activation in human plasma/blood and hypersensitivity reactions in rats. Furthermore, accelerated blood clearance (ABC) was investigated to obtain a complete assessment of DPPG2-TSL interactions with components of the blood and identify drivers for circulation half-life. A higher mol% DPPG2 increased Apolipoprotein E (ApoE) adsorption and decreased complement activation and granulocyte interaction in vitro. In contrast to PEG-TSL, DPPG2-TSL showed no ABC effect. In vivo hypersensitivity assessment by eicosanoid measurements, platelet and lymphocyte counting resembled the results of in vitro complement activation assays although here all DPPG2-TSL formulations induced hypersensitive responses upon i.v. administration. Prolonged circulation half-life of DPPG2-TSL may be ApoE-induced and the absent ABC effect demonstrates an advantage over PEG-TSL. Low complement activation in human plasma and blood for 20-30 mol% DPPG2-TSL presents a unique formulation attribute with the potential to strengthen clinical evaluation.


Subject(s)
Hyperthermia, Induced , Liposomes , Animals , Doxorubicin , Half-Life , Polyethylene Glycols , Rats
9.
Int J Nanomedicine ; 16: 75-88, 2021.
Article in English | MEDLINE | ID: mdl-33447028

ABSTRACT

PURPOSE: Current treatment options for muscle-invasive bladder cancer (MIBC) are associated with substantial morbidity. Local release of doxorubicin (DOX) from phosphatidyldiglycerol-based thermosensitive liposomes (DPPG2-TSL-DOX) potentiated by hyperthermia (HT) in the bladder wall may result in bladder sparing without toxicity of systemic chemotherapy. We investigated whether this approach, compared to conventional DOX application, increases DOX concentrations in the bladder wall while limiting DOX in essential organs. MATERIALS AND METHODS: Twenty-one pigs were anaesthetized, and a urinary catheter equipped with a radiofrequency-emitting antenna for HT (60 minutes) was placed. Experimental groups consisted of iv low or full dose (20 or 60 mg/m2) DPPG2-TSL-DOX with/without HT, iv low dose (20 mg/m2) free DOX with HT, and full dose (50 mg/50 mL) intravesical DOX with/without HT. After the procedure, animals were immediately sacrificed. HPLC was used to measure DOX levels in the bladder, essential organs and serum, and fluorescence microscopy to evaluate DOX distribution in the bladder wall. RESULTS: Iv DPPG2-TSL-DOX with HT resulted in a significantly higher bladder wall DOX concentration which was more homogeneous distributed, than iv and intravesical free DOX administration with HT. Specifically in the detrusor, DPPG2-TSL-DOX with HT led to a >7- and 44-fold higher DOX concentration, compared to iv free DOX with HT and intravesical DOX, respectively. Organ DOX concentrations were significantly lower in heart and kidneys, and similar in liver, spleen and lungs, following iv DPPG2-TSL-DOX with HT, compared to iv free DOX. Intravesical DOX led to the lowest organ DOX concentrations. CONCLUSION: Iv DPPG2-TSL-DOX combined with HT achieved higher DOX concentrations in the bladder wall including the detrusor, compared to conventional iv and intravesical DOX application. In combination with lower DOX accumulation in heart and kidneys, compared to iv free chemotherapy, DPPG2-TSL-DOX with HT has great potential to attain a role as a bladder-sparing treatment for MIBC.


Subject(s)
Doxorubicin/therapeutic use , Hyperthermia, Induced , Muscles/pathology , Phosphatidylglycerols/chemistry , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/pathology , Animals , Antibiotics, Antineoplastic/administration & dosage , Cell Line, Tumor , Doxorubicin/blood , Doxorubicin/pharmacokinetics , Doxorubicin/pharmacology , Drug Delivery Systems , Female , Fluorescence , Humans , Hyperthermia, Induced/adverse effects , Liposomes , Neoplasm Invasiveness , Swine , Temperature , Urinary Bladder Neoplasms/blood
10.
Biochim Biophys Acta ; 1768(10): 2491-9, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17618599

ABSTRACT

Recently, we reported that 1,2-dipalmitoyl-sn-glycero-3-phosphoglyceroglycerol (DPPGOG) prolongs the circulation time of thermosensitive liposomes (TSL). Since the only TSL formulation in clinical trials applies DSPE-PEG2000 and lysophosphatidylcholine (P-lyso-PC), the objective of this study was to compare the influence of these lipids with DPPGOG on in vitro stability and heat-induced drug release properties of TSL. The content release rate was significantly increased by incorporating DPPGOG or P-lyso-PC in TSL formulations. DPPC/DSPC/DPPGOG 50:20:30 (m/m) and DPPC/P-lyso-PC/DSPE-PEG2000 90:10:4 (m/m) did not differ significantly in their release rate of carboxyfluorescein with >70% being released within the first 10s at their phase transition temperature. Furthermore, DPPC/DSPC/DPPGOG showed an improved stability at 37 degrees C in serum compared to the PEGylated TSL. The in vitro properties of DPPGOG-containing TSL remained unchanged when encapsulating doxorubicin instead of carboxyfluorescein. The TSL retained 89.1+/-4.0% of doxorubicin over 3 h at 37 degrees C in the presence of serum. The drug was almost completely released within 120s at 42 degrees C. In conclusion, DPPGOG improves the in vitro properties in TSL formulations compared to DSPE-PEG2000, since it not only increases the in vivo half-life, it even increases the content release rate without negative effect on TSL stability at 37 degrees C which has been seen for DSPE-PEG2000/P-lyso-PC containing TSL.


Subject(s)
Glycerol/analogs & derivatives , Liposomes/chemistry , Palmitates/chemistry , Doxorubicin/administration & dosage , Doxorubicin/chemistry , Drug Stability , Glycerol/chemistry , Lipid Bilayers/chemistry , Phosphatidylethanolamines , Polyethylene Glycols , Solubility , Temperature
11.
Article in English | MEDLINE | ID: mdl-18508417

ABSTRACT

A sensitive and specific liquid chromatography-tandem mass spectrometry method was developed and validated for the quantification of erucylphosphohomocholine (erufosine, ErPC(3)) in pharmacokinetic studies. Nine-fold deuterated ErPC(3) was used as the internal standard. Following protein precipitation, reversed phase chromatography was performed. For analyte detection, electrospray ionization in the positive mode was applied. The mass transition m/z 504.4>139.1 was recorded for ErPC(3), and the transition m/z 513.7>139.1 for the internal standard, respectively. Good linearity with a correlation coefficient >0.99 was found for the range of 0.48-15 mg/L ErPC(3) in plasma (0.93-29.8 microM), the important range for clinical pharmacokinetic analysis. Interassay coefficients (n=10) of variation between 4.2% and 5.5% were found for ErPC(3) pool samples with concentrations between 4.7 mg/L and 44.0mg/L, respectively. The method has been used for analyses during a phase I clinical trial of ErPC(3).


Subject(s)
Chromatography, Liquid/methods , Organophosphates/blood , Quaternary Ammonium Compounds/blood , Tandem Mass Spectrometry/methods , Chromatography, Liquid/standards , Deuterium , Humans , Indicator Dilution Techniques , Injections, Intravenous , Organophosphates/administration & dosage , Organophosphates/standards , Quaternary Ammonium Compounds/administration & dosage , Quaternary Ammonium Compounds/standards , Reference Standards , Tandem Mass Spectrometry/standards
12.
Eur J Pharm Biopharm ; 119: 215-223, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28648864

ABSTRACT

Thermosensitive liposomes (TSLs) whose phase-transition temperature (Tm) lies slightly above body temperature are ideal candidates for controlled drug release via local hyperthermia. Recent studies, however, have revealed disruptive shifts in the release temperature Tr in mouse plasma, which are attributed to undefined interactions with blood proteins. Here, we study the effects of four major plasma proteins - serum albumin (SA), transferrin (Tf), apolipoprotein A1 (ApoA1) and fibrinogen (Fib) - on the temperature-dependent release of fluorescein di-ß-D-galactopyranoside (FDG) from TSLs. The amount of fluorescein released was quantified by fluorescence correlation spectroscopy (FCS) after hydrolysis of FDG with ß-galactosidase (ß-Gal). This approach is more sensitive and thus superior to previous release assays, as it is impervious to the confounding effects of Triton on conventional fluorescence measurements. The assay determines the molar release ratio, i.e. the number of molecules released per liposome. We show that shifts in the Tr of release do not reflect protein affinities for the liposomes derived from adsorption isotherms. We confirm a remarkable shift in induced release towards lower temperatures in the presence of mouse plasma. In contrast, exposure to rat or human plasma, or fetal bovine serum (FBS), has no effect on the release profile.


Subject(s)
Blood Proteins/chemistry , Liposomes/chemistry , Animals , Cattle , Drug Delivery Systems/methods , Fluorescence , Humans , Mice , Protein Binding , Spectrometry, Fluorescence/methods , Temperature , beta-Galactosidase/chemistry
13.
J Control Release ; 237: 138-46, 2016 09 10.
Article in English | MEDLINE | ID: mdl-27364227

ABSTRACT

The efficacy of systemically applied, classical anti-cancer drugs is limited by insufficient selectivity to the tumor and the applicable dose is limited by side effects. Efficacy could be further improved by targeting of the drug to the tumor. Using thermosensitive liposomes (TSL) as a drug carrier, targeting is achieved by control of temperature in the target volume. In such an approach, effective local hyperthermia (40-43°C) (HT) of the tumor is considered essential but technically challenging. Thus, visualization of local heating and drug release using TSL is considered an important tool for further improvement. Visualization and feasibility of chemodosimetry by magnetic resonance imaging (MRI) has previously been demonstrated using TSL encapsulating both, contrast agent (CA) and doxorubicin (DOX) simultaneously in the same TSL. Dosimetry has been facilitated using T1-relaxation time change as a surrogate marker for DOX deposition in the tumor. To allow higher loading of the TSL and to simplify clinical development of new TSL formulations a new approach using a mixture of TSL either loaded with DOX or MRI-CA is suggested. This was successfully tested using phosphatidyldiglycerol-based TSL (DPPG2-TSL) in Brown Norway rats with syngeneic soft tissue sarcomas (BN175) implanted at both hind legs. After intravenous application of DOX-TSL and CA-TSL, heating of one tumor above 40°C for 1h using laser light resulted in highly selective DOX uptake. The DOX-concentration in the heated tumor tissue compared to the non-heated tumor showed an almost 10-fold increase. T1 and additional MRI surrogate parameters such as signal phase change were correlated to intratumoral DOX concentration. Visualization of DOX delivery in the sense of a chemodosimetry was demonstrated. Although phase-based MR-thermometry was affected by CA-TSL, phase information was found suitable for DOX concentration assessment. Local differences of DOX concentration in the tumors indicated the need for visualization of drug release for further improvement of targeting.


Subject(s)
Antibiotics, Antineoplastic/administration & dosage , Doxorubicin/analogs & derivatives , Drug Delivery Systems , Sarcoma, Experimental/drug therapy , Animals , Antibiotics, Antineoplastic/pharmacokinetics , Antibiotics, Antineoplastic/therapeutic use , Cell Line, Tumor , Delayed-Action Preparations/chemistry , Doxorubicin/administration & dosage , Doxorubicin/pharmacokinetics , Doxorubicin/therapeutic use , Hyperthermia, Induced , Magnetic Resonance Imaging , Male , Polyethylene Glycols/administration & dosage , Polyethylene Glycols/pharmacokinetics , Polyethylene Glycols/therapeutic use , Rats , Sarcoma, Experimental/pathology
14.
J Control Release ; 222: 47-55, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26658073

ABSTRACT

Systemic chemotherapy of solid tumors could be enhanced by local hyperthermia (HT) in combination with thermosensitive liposomes (TSL) as drug carriers. In such an approach, effective HT of the tumor is considered essential for successful triggering local drug release and targeting of the drug to the tumor. To investigate the effect of HT method on the effectiveness of drug delivery, a novel laser-based HT device designed for the use in magnetic resonance imaging (MRI) was compared systematically with the frequently used cold light lamp and water bath HT. Long circulating phosphatidyldiglycerol-based TSL (DPPG2-TSL) with encapsulated doxorubicin (DOX) were used as drug carrier enabling intravascular drug release. Experiments were performed in male Brown Norway rats with a syngeneic soft tissue sarcoma (BN 175) located on both hind legs. One tumor was heated while the second tumor remained unheated as a reference. Six animals were investigated per HT method. DPPG2-TSL were injected i.v. at a stable tumor temperature above 40°C. Thereafter, temperature was maintained for 60min. Total DOX concentration in plasma, tumor tissue and muscle was determined post therapy by HPLC. Finally, the new laser-based device was tested in a MRI environment at 3T using DPPG2-TSL with encapsulated Gd-based contrast agent. All methods showed effective DOX delivery by TSL with 4.5-23.1ng/mg found in the heated tumors. In contrast, DOX concentration in the non-heated tumors was 0.5±0.1ng/mg. Independent of used HT methods, higher DOX levels were found in the smaller tumors. In comparison water bath induced lowest DOX delivery but still showing fourfold higher DOX concentrations compared to the non-heated tumors. With the laser-based applicator, a 13 fold higher DOX deposition was possible for large tumors and a 15 fold higher for the small tumors, respectively. Temperature gradients in the tumor tissue were higher with the laser and cold light lamp (-0.3°C/mm to -0.5°C/mm) compared to the water bath (-0.1°C/mm and -0.2°C/mm). Visualization of HT in the MRI demonstrated successful localized heating throughout the entire tumor volume by contrast agent release from DPPG2-TSL. In conclusion, HT triggered drug delivery by using DPPG2-TSL is a promising tool in chemotherapy but effectiveness markedly depended on the method of heating and also on tumor size. Local HT using a cold light lamp or the new laser applicator allowed more efficient drug delivery than using a regional water bath heating. MR-compatibility of the new applicator gives the opportunity for future experiments investing drug delivery in more detail by MRI at low technical efforts.


Subject(s)
Antibiotics, Antineoplastic/administration & dosage , Doxorubicin/administration & dosage , Hyperthermia, Induced , Neoplasms, Experimental/drug therapy , Animals , Antibiotics, Antineoplastic/blood , Antibiotics, Antineoplastic/pharmacokinetics , Antibiotics, Antineoplastic/therapeutic use , Cell Line, Tumor , Doxorubicin/blood , Doxorubicin/pharmacokinetics , Doxorubicin/therapeutic use , Drug Liberation , Hot Temperature , Lasers , Liposomes , Male , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Rats , Tissue Distribution , Tumor Burden/drug effects
15.
Int J Nanomedicine ; 9: 4387-98, 2014.
Article in English | MEDLINE | ID: mdl-25258529

ABSTRACT

Thermosensitive liposomes are a promising tool for external targeting of drugs to solid tumors when used in combination with local hyperthermia or high intensity focused ultrasound. In vivo results have demonstrated strong evidence that external targeting is superior over passive targeting achieved by highly stable long-circulating drug formulations like PEGylated liposomal doxorubicin. Up to March 2014, the Web of Science listed 371 original papers in this field, with 45 in 2013 alone. Several formulations have been developed since 1978, with lysolipid-containing, low temperature-sensitive liposomes currently under clinical investigation. This review summarizes the historical development and effects of particular phospholipids and surfactants on the biophysical properties and in vivo efficacy of thermosensitive liposome formulations. Further, treatment strategies for solid tumors are discussed. Here we focus on temperature-triggered intravascular and interstitial drug release. Drug delivery guided by magnetic resonance imaging further adds the possibility of performing online monitoring of a heating focus to calculate locally released drug concentrations and to externally control drug release by steering the heating volume and power. The combination of external targeting with thermosensitive liposomes and magnetic resonance-guided drug delivery will be the unique characteristic of this nanotechnology approach in medicine.


Subject(s)
Drug Delivery Systems/methods , Liposomes/administration & dosage , Nanomedicine/methods , Animals , Humans , Liposomes/chemistry , Temperature
16.
Trends Mol Med ; 20(5): 271-81, 2014 May.
Article in English | MEDLINE | ID: mdl-24594264

ABSTRACT

Atherosclerosis is a chronic inflammatory disease of the arterial wall that arises from an imbalanced lipid metabolism and a maladaptive inflammatory response. Despite intensive research on mechanisms underlying atherosclerotic lesion formation and progression during the past decade, translation of this knowledge into the clinic is scarce. Although developments have primarily been made in the area of antitumor therapy, recent advances have shown the potential of nanomedicine-based treatment strategies for atherosclerosis. Here we describe the features of currently available nanomedical formulations that have been optimized for atherosclerosis treatment, and we further describe how they can be instructed to target inflammatory processes in the arterial wall. Despite their limitations, nanomedical applications might hold promise for personalized medicine, and further efforts are needed to improve atherosclerosis-specific targeting.


Subject(s)
Atherosclerosis/drug therapy , Nanomedicine , Drug Delivery Systems , Humans , Nanomedicine/methods , Precision Medicine
17.
J Control Release ; 166(1): 22-9, 2013 Feb 28.
Article in English | MEDLINE | ID: mdl-23246469

ABSTRACT

Thermosensitive liposomes (TSL) with encapsulated magnetic resonance imaging (MRI) longitudinal relaxation time (T(1)) contrast agents (CAs) have been proposed for MRI assisted interventional thermotherapy in solid tumors. Here the feasibility of 6 clinically approved CAs (Gd-DTPA, Gd-BOPTA, Gd-DOTA, Gd-BT-DO3A, Gd-DTPA-BMA, and Gd-HP-DO3A) for formulation into TSL was investigated. CAs were passively encapsulated with 323 mOs kg(-1) into 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/1,2-distearoyl-sn-glycero-3-phosphocholine/1,2-dipalmitoyl-sn-glycero-3-phosphodiglycerol 50/20/30 (mol/mol) TSL (DPPG(2)-TSL) to obtain stable formulations. T(1) relaxivity (r(1)) and diffusive permeability to water (P(d)) across the membrane were determined. Shelf life at 4°C was investigated by determining lysolipid content up to 10 weeks after preparation. All preparations were monodispersed with comparable small vesicle sizes (~135 nm). Neither zeta potential nor phase transition temperature (T(m)) was affected by the CA. The formulations showed an increase in r(1) in the temperature range between 38 and 44°C. This correlated with the phase transition. Change in r(1) (Δr(1)=r(1)(45.3°C)-r(1)(37.6°C)) and r(1) (T

Subject(s)
Contrast Media/administration & dosage , Drug Carriers/chemistry , Gadolinium DTPA/administration & dosage , Magnetic Resonance Imaging , Phosphatidylglycerols/chemistry , 1,2-Dipalmitoylphosphatidylcholine/analogs & derivatives , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Contrast Media/chemistry , Drug Compounding , Gadolinium DTPA/chemistry , Liposomes , Particle Size , Phosphatidylcholines/chemistry , Surface Properties , Transition Temperature
18.
J Control Release ; 168(2): 142-50, 2013 Jun 10.
Article in English | MEDLINE | ID: mdl-23524188

ABSTRACT

Liposome mediated anticancer drug delivery has the advantage of reducing cytotoxicity in healthy tissues. However, undesired slow drug release impedes the therapeutic efficacy of clinically applied PEG-liposomal doxorubicin (Dox). The aim of this study is to combine stealth thermosensitive liposomes (TSL) and local mild hyperthermia (HT) to increase bioavailable Dox levels in tumors. Dox was encapsulated in stealth TSL (~80nm) with optimized PEG concentration in the membrane, and compared with lysolipid-based Dox-LTSL for in vitro stability, release kinetics, and in vivo tumor growth control. In vitro cytotoxicity of Dox-TSL against murine BFS-1 sarcoma and, human BLM melanoma cell lines and Human Umbilical Vein Endothelial Cells (HUVEC) under normothermia (37°C) and HT (42°C) was compared with non-encapsulated Dox. In vitro Dox uptake in nuclei was imaged in BLM and HUVEC. In vivo intravascular Dox release from TSL in BFS-1 tumors under local mild HT in dorsal skin flap window chamber models was captured by intravital confocal microscopy. Intravascular Dox-TSL release kinetics, penetration depth and interstitial Dox density were subjected to quantitative image analysis. Systemic Dox-TSL administration in combination with local mild HT on subcutaneous tumor growth control was compared to Dox-LTSL plus local mild HT. Dox-TSL was stable at 37°C, while released over 95% Dox within 1min in 90% serum at 42°C. Dox-TSL demonstrated efficient in vivo intratumoral Dox release under local mild HT, followed by significant Dox uptake by tumor and tumor vascular endothelial cells. Dox-TSL plus mild HT showed improved tumor growth control over Dox-LTSL plus mild HT. Survival after a single treatment of Dox-TSL plus mild HT was 67%, while survival after Dox-LTSL plus mild HT was 22%. This combination of Dox-TSL and local mild HT offers promising clinical opportunities to improve liposomal Dox delivery to solid tumors.


Subject(s)
Antibiotics, Antineoplastic/administration & dosage , Doxorubicin/administration & dosage , Hyperthermia, Induced , Melanoma/therapy , Animals , Antibiotics, Antineoplastic/chemistry , Cell Line, Tumor , Cell Nucleus/metabolism , Cell Survival/drug effects , Combined Modality Therapy , Doxorubicin/chemistry , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Liposomes , Melanoma/metabolism , Mice , Mice, Inbred C57BL , Treatment Outcome , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
19.
J Control Release ; 162(2): 400-6, 2012 Sep 10.
Article in English | MEDLINE | ID: mdl-22759980

ABSTRACT

Thermosensitive liposomes (TSL) are a promising tool for triggered drug delivery in combination with local hyperthermia. Objective of this study was to investigate the influence of serum on TSL in more detail and to identify serum components which are responsible for increasing drug release. Four different formulations were investigated: DPPC/DSPC/1,2-dipalmitoyl-sn-glycero-3-phosphodiglycerol (DPPG(2)) 50/20/30 (mol/mol) (DPPG(2)-TSL); DPPC/DSPC/DPPG(2)/DSPE-PEG2000 50/15/30/5 (mol/mol) (DPPG(2)/PEG-TSL), DPPC/P-Lyso-PC/DSPE-PEG2000 90/10/4 (mol/mol) (PEG/Lyso-TSL), and DPPC/DSPC/DSPE-PEG2000 80/15/5 (mol/mol) (PEG-TSL). DPPG(2)-TSL was the only formulation which was unaffected by osmotic stress. All formulations tested were influenced by serum components but the susceptibility was depended on the lipid composition of the vesicle. Presence of albumin (HSA) or cholesterol-containing lipid vesicles (DPPC/Chol-LLV) increased the membrane permeability for all tested formulations at temperatures around and above T(m) in a concentration based manner. PEGylation was not able to prevent the observed effect. PEG-TSL and PEG/Lyso-TSL were more susceptible to DPPC/Chol-LLV than DPPG(2)-containing TSL. In contrast, immunoglobulin type G (IgG) affected only anionic formulations. The membrane of DPPG(2)-TSL and DPPG(2)/PEG-TSL was more susceptible toward IgG as compared to HSA. DPPG(2)-TSL and PEG/Lyso-TSL were differentially influenced by fetal calf serum (FCS). As DPPG(2)-TSL was stabilized by pre-incubation with FCS at 37°C, this was the opposite for PEG/Lyso-TSL which were destabilized under these conditions. Individual serum components were unable to mimic the complex situation in full serum. Hence, the use of plasma or serum is still inevitable to investigate stability and release properties of novel TSL formulations until all serum components have been identified that alter TSL integrity.


Subject(s)
Liposomes/metabolism , Plasma/metabolism , Serum/metabolism , Animals , Antibiotics, Antineoplastic/metabolism , Cricetinae , Doxorubicin/metabolism , Fluoresceins/metabolism , Fluorescent Dyes/metabolism , Humans , Mice , Phospholipids/chemistry , Polyethylene Glycols/chemistry , Rats , Serum Albumin/metabolism , Temperature
20.
Curr Opin Drug Discov Devel ; 13(1): 111-23, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20047152

ABSTRACT

Liposomes are the most widely used nanocarrier systems in medicine. Common strategies for tumor-specific drug delivery using liposomes include the passive accumulation of liposomes that have an increased circulation half-life, which is possible as a result of the leakiness of tumor neovasculature, as well as the active targeting of liposomes using surface-bound ligands. However, such targeting of the nanocarrier is not effective if the encapsulated drug within the liposome is not released at the intended site. Drug release can be influenced by both the membrane composition of the liposome and the choice of drug. In addition to environmental triggers, such as low pH and the presence of particular enzymes, external stimuli such as heat or ultrasound have gained attention in the clinic. This review provides a summary of the various approaches to modifying drug release from liposomes.


Subject(s)
Drug Delivery Systems , Liposomes , Animals , Drug Carriers , Humans , Lipid Metabolism , Liposomes/chemistry , Liposomes/therapeutic use , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL