Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Neurochem Res ; 48(1): 210-228, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36064822

ABSTRACT

Temporal lobe epilepsy is the most drug-resistant type with the highest incidence among the other focal epilepsies. Metabolic manipulations are of great interest among others, glycolysis inhibitors like 2-deoxy D-glucose (2-DG) being the most promising intervention. Here, we sought to investigate the effects of 2-DG treatment on cellular and circuit level electrophysiological properties using patch-clamp and local field potentials recordings and behavioral alterations such as depression and anxiety behaviors, and changes in nitric oxide signaling in the intrahippocampal kainic acid model. We found that epileptic animals were less anxious, more depressed, with more locomotion activity. Interestingly, by masking the effect of increased locomotor activity on the parameters of the zero-maze test, no altered anxiety behavior was noted in epileptic animals. However, 2-DG could partially reverse the behavioral changes induced by kainic acid. The findings also showed that 2-DG treatment partially suppresses cellular level alterations while failing to reverse circuit-level changes resulting from kainic acid injection. Analysis of NADPH-diaphorase positive neurons in the CA1 area of the hippocampus revealed that the number of positive neurons was significantly reduced in dorsal CA1 of the epileptic animals and 2-DG treatment did not affect the diminishing effect of kainic acid on NADPH-d+ neurons in the CA1 area. In the control group receiving 2-DG, however, an augmented NADPH-d+ cell number was noted. These data suggest that 2-DG cannot suppress epileptiform activity at the circuit-level in this model of epilepsy and therefore, may fail to control the seizures in temporal lobe epilepsy cases.


Subject(s)
Epilepsy, Temporal Lobe , Epilepsy , Animals , Epilepsy, Temporal Lobe/chemically induced , Epilepsy, Temporal Lobe/drug therapy , Epilepsy, Temporal Lobe/prevention & control , Kainic Acid/toxicity , NADPH Dehydrogenase/metabolism , NADPH Dehydrogenase/pharmacology , Glucose/metabolism , NADP/metabolism , Hippocampus/metabolism , Epilepsy/metabolism , Neurons/metabolism , Deoxyglucose/pharmacology , Deoxyglucose/therapeutic use , Glycolysis , Disease Models, Animal
2.
Addict Biol ; 28(8): e13308, 2023 08.
Article in English | MEDLINE | ID: mdl-37500490

ABSTRACT

Adolescence represents a distinctive vulnerable period when exposure to stressful situations including opioid exposure can entail lasting effects on brain and can change neural mechanisms involved in memory formation for drug-associated cues, possibly increasing vulnerability of adolescents to addiction. Herein, the effects of acute adolescent morphine exposure (AAME, two injections of 2.5 mg/kg SC morphine on PND 31) were therefore investigated 6 weeks later (adulthood) on avoidance memory and hippocampal long-term potentiation (LTP) at Schaffer collateral-CA1 synapses in transvers slices from the ventral hippocampus in adult male rats using field recordings technique. Animal body weight was measured from PND 31 throughout PND 40 and also in four time points with 1 week intervals from adolescence to adulthood (PNDs 48, 55, 62 and 69) to evaluate the effect of AAME on the weight gain. We showed that there were no effects on body weight, anxiety-like behaviour and locomotor activity, even until adulthood. There was an improved dark avoidance memory during adulthood. Finally, AAME had no effects on baseline synaptic responses and resulted in a decrease in the mean values of the field excitatory postsynaptic potential slopes required to evoke the half-maximal population spike amplitude and an enhancement of LTP magnitude (%) in the ventral CA1 during adulthood. Briefly, our results suggest long-lasting effects of acute adolescent morphine exposure on the ventral hippocampus, which begin the enhancing of synaptic plasticity and the improving of emotional memory in adulthood.


Subject(s)
Long-Term Potentiation , Morphine , Rats , Male , Animals , Morphine/pharmacology , Hippocampus , Neuronal Plasticity , Analgesics, Opioid/pharmacology , CA1 Region, Hippocampal
3.
Dev Psychobiol ; 65(6): e22410, 2023 09.
Article in English | MEDLINE | ID: mdl-37607891

ABSTRACT

Prenatal stress (PS) results from a maternal experience of stressful events during pregnancy, which has been associated with an increased risk of behavioral disorders including substance abuse and anxiety in the offspring. PS is known to result in heightened dopamine release in the ventral tegmental area (VTA), in part through the effects of corticotropin-releasing hormone, which directly excites dopaminergic cells. It has recently been suggested that agmatine plays a role in modulating anxiety-like behaviors. In this study, we investigated whether agmatine could reduce negative cognitive outcomes in male mice prenatally exposed to psychological/physical stress, and whether this could be associated with molecular changes in VTA. Agmatine (37.5 mg/kg) was administrated 30 min prior to PS induction in pregnant Swiss mice. Male offspring were evaluated in a series of behavioral and molecular assays. Findings demonstrated that agmatine reduced the impairment in locomotor activity induced by both psychological and physical PS. Agmatine also decreased heightened conditioned place preference to morphine seen in PS offspring. Moreover, agmatine ameliorated the anxiety-like behavior and drug-seeking behavior induced by PS in the male offspring. Molecular effects were seen in VTA as the enhanced brain-derived neurotrophic factor (BDNF) induced by PS in the VTA was reduced by agmatine. Behavioral tests indicate that agmatine exerts a protective effect on PS-induced impairments in male offspring, which could be due in part to agmatine-associated molecular alterations in the VTA. Taken together, our data suggest that prenatal treatment with agmatine exerts protective effect against negative consequences of PS on the development of affective circuits in the offspring.


Subject(s)
Agmatine , Ventral Tegmental Area , Male , Female , Pregnancy , Animals , Mice , Agmatine/pharmacology , Anxiety , Anxiety Disorders , Cognition
4.
Epilepsy Behav ; 135: 108907, 2022 10.
Article in English | MEDLINE | ID: mdl-36095872

ABSTRACT

Epilepsy is characterized by the unpredictability but recurrence of seizures caused by the synchronized aberrant firing of neuronal populations. It has been shown that astrocytes (one of the most prominent glial cells) are ideally positioned to induce or contribute to neural network synchronization. Although astrocytes cannot generate action potentials, they have the capacity to sense and respond to neuronal activity, which allows them to function as homeostatic regulators of synaptic interactions. Considering the necessity of astrocyte-neuron bidirectional interactions in synaptic transmission and plasticity, in the current study, the role of astrocytes in synaptic metaplasticity and resultant behavioral seizures induced by Pentylentetrazole (PTZ) was assessed. Rats were kindled by intraperitoneal (i.p.) injection of PTZ (30 mg/kg/48 h). A glial cell inhibitor, Fluorocitrate (FC), was injected into the right lateral cerebral ventricle of the rat 30 min before PTZ during kindling progress. The maximal seizure stage (SS), stage 2 and 4 latency (S2L, S4L), stage 4 and 5 duration (S4D, S5D), and seizure duration (SD) were all assessed 20 min after PTZ administration by observation. Following Schaffer collateral stimulation, in vivo field, potential recordings from the CA1 area of the hippocampus were employed to assess the metaplasticity induced in kindled rats. The inhibition of glial cells during the kindling process significantly lowered SS, S4D&S5D and increased S4L (Two-way ANOVA, Bonferroni Posttest, P < 0.05, P < 0.01, and P < 0.001). In comparison to the control group, electrophysiological data demonstrated that HFS-induced LTP in kindled animals was decreased (Unpaired t-test, P < 0.05). Glial cell inhibition prevented PTZ's effect on LTP. Our data imply that kindling altered CA1 pyramidal neurons' vulnerability to synaptic plasticity. This shift in neuronal plasticity (metaplasticity) is mediated in part by glial cells and is important in the formation of seizure symptoms. As a result, glial cell inhibition was found to alleviate seizure behavior.


Subject(s)
Kindling, Neurologic , Pentylenetetrazole , Animals , Astrocytes , Hippocampus , Incidence , Kindling, Neurologic/physiology , Neuronal Plasticity , Pentylenetetrazole/pharmacology , Rats , Seizures/chemically induced
5.
Dev Psychobiol ; 64(7): e22315, 2022 11.
Article in English | MEDLINE | ID: mdl-36282759

ABSTRACT

Epidemiological studies show the prevalence of opioid use, misuse and abuse in adolescents, which imposes social and economic accountability worldwide. Chronic opioid exposure, especially in adolescents, may have lasting effects on emotional behaviors that persist into adulthood. The current experiments were therefore designed to study the effects of sustained opioid exposure during adolescence on anxiety-like behaviors. Adolescent male Wistar rats underwent increasing doses of morphine for 10 days (PNDs 31-40). After that the open field test (OFT) and elevated plus maze (EPM) test were performed over a 4-week postmorphine treatment from adolescence to adulthood. Moreover, the weight of the animals was measured at these time points. We found that chronic adolescent morphine exposure reduces the weight gain during the period of morphine treatment and 4 weeks after that. It had no significant effect on the locomotor activity in the animals. Moreover, anxiolytic-like behavior was observed in the rats exposed to morphine during adolescence evaluated by OFT and EPM test. Thus, long-term exposure to morphine during adolescence has the profound potential of altering the anxiety-like behavior profile in the period from adolescence to adulthood. The maturation of the nervous system can be affected by drug abuse during the developmental window of adolescence and these effects may lead to behaviorally stable alterations.


Subject(s)
Anti-Anxiety Agents , Morphine , Animals , Rats , Male , Morphine/pharmacology , Anti-Anxiety Agents/pharmacology , Analgesics, Opioid/pharmacology , Rats, Wistar , Maze Learning , Anxiety/psychology
6.
Int J Neurosci ; 132(3): 226-236, 2022 Mar.
Article in English | MEDLINE | ID: mdl-32799586

ABSTRACT

AIMS: Evidence suggests that glial cells are influenced by Traumatic brain injury (TBI). Both protective and damaging roles have been attributed to reactive glial cells, but their role after TBI has not been well understood. In this study, the role of glial cells in TBI-induced cognitive impairment was investigated. MATERIALS AND METHODS: Male rats were randomly assigned to the following groups: Sham + PBS, sham + FC, TBI + PBS, and TBI + FC. FC (1 nmol/1 µl), a glial cell inhibitor, was injected into the lateral ventricle 10 min after TBI induction and it was repeated every 24 h until the seventh day. On days 8-13 post-injury, reference and reverse memory and on days 8-16 post-injury, working memory was assessed using the Morris water maze test. RESULTS: Brain-injured rats exhibited significant impairments in acquisition and retrieval phases of reference and reverse memory compared to sham rats and FC administration could not attenuate the deteriorative effect of TBI in different learning tasks. TBI rats showed impairment in acquisition (but not retrieval) of working memory. Sham animals which received FC showed a deficit in reversal memory acquisition and retrieval of reference memory compared to sham + PBS rats. CONCLUSION: The present study demonstrates that memory deficit induced by TBI cannot be improved by FC, and glial cells inhibition in uninjured animals causes impairments in reversal memory acquisition and retrieval of reference memory. Our results suggest that in addition to essential role of glial cells for memory formation in normal situation, their responses after TBI may have preventive effect against memory impairments.


Subject(s)
Brain Injuries, Traumatic , Memory, Short-Term , Animals , Brain Injuries, Traumatic/complications , Disease Models, Animal , Male , Maze Learning , Memory Disorders/etiology , Memory Disorders/prevention & control , Memory, Short-Term/physiology , Neuroglia , Rats , Rats, Sprague-Dawley
7.
Hippocampus ; 31(2): 156-169, 2021 02.
Article in English | MEDLINE | ID: mdl-33107111

ABSTRACT

Traumatic brain injury (TBI) is associated with epileptiform activity in the hippocampus; however, the underlying mechanisms have not been fully determined. The goal was to understand what changes take place in intrinsic neuronal physiology in the hippocampus after blunt force trauma to the cortex. In this context, hyperpolarization-activated cation current (Ih ) currents may have a critical role in modulating the neuronal intrinsic membrane excitability; therefore, its contribution to the TBI-induced hyperexcitability was assessed. In a model of TBI caused by controlled cortical impact (CCI), the intrinsic electrophysiological properties of pyramidal neurons were examined 1 week after TBI induction in rats. Whole-cell patch-clamp recordings were performed under current- and voltage-clamp conditions following ionotropic receptors blockade. Induction of TBI caused changes in the intrinsic excitability of pyramidal neurons, as shown by a significant increase and decrease in firing frequency and in the rheobase current, respectively (p < .05). The evoked firing rate and the action potential time to peak were also significantly increased and decreased, respectively (p < .05). In the TBI group, the amplitude of instantaneous and steady-state Ih currents was both significantly smaller than those in the control group (p < .05). The Ih current density was also significantly decreased (p < .001). Findings indicated that TBI led to an increase in the intrinsic excitability in CA1 pyramidal neurons and changes in Ih current could be, in part, one of the underlying mechanisms involved in this hyperexcitability.


Subject(s)
Brain Injuries, Traumatic , Hippocampus , Action Potentials/physiology , Animals , Cations , Neurons/physiology , Pyramidal Cells/physiology , Rats
8.
Neurobiol Learn Mem ; 183: 107462, 2021 09.
Article in English | MEDLINE | ID: mdl-34015444

ABSTRACT

Autism spectrum disorder (ASD) is a severe life-long neuropsychiatric disorder. Alterations and imbalance of several neurochemical systems may be involved in ASD pathophysiology, of them, serotonergic neurotransmission dysfunction and deficiency may underlie behavioral abnormalities associated with ASD. However, the functional importance of serotonergic receptors, particularly 5HT7 receptors in ASD pathology remains poorly defined. Serotonin receptor subtype 7 (5-HT7R) plays a direct regulatory role in the development and also for the mature function of the brain, therefore, further studies are necessary to elucidate the role of these receptors in the etiology of autism. To address this issue, we combined here behavioral, electrophysiological methods to further characterize the contribution of 5-HT7Rs in the prenatal valproic acid (VPA) exposure-induced impairment in synaptic plasticity and their impact on the associated behavioral changes. This may help to unravel the underlying cellular mechanisms involved in ASD and can lead to new treatment and/or prevention therapies based on the role of the serotonergic system for autism. Findings revealed that compared to control, autistic-like offspring showed increased anxiety-like behavior, reduced social interaction, decreased locomotor activity, and impaired identification of the novel object. However, administration of 5-HT7Rs agonist, LP-211, for 7 consecutive days before testing from postnatal day 21 to 27 reversed all behavioral deficits induced by prenatal exposure to VPA in offspring. Also, both short-term depression and long-term potentiation were impaired in the autistic-like pups, but activation of 5-HT7Rs rescued the LTP impairment in the autistic-like group so that there was no significant difference between the two groups. Blockade of 5-HT7Rs caused LTP impairment following HFS in the autistic-like group. Besides, there was a significant difference in LTD induction following SB-269970 application between the control and the autistic-like groups measured at first 10 min following TPS. Moreover, both the number and the size of retrograde fast blue-labelled neurons in the raphe nuclei were reduced. Overall, these results provide for the first time, as far as we know, functional evidence for the restorative role of 5-HT7Rs activation against prenatal VPA exposure induced behavioral deficits and hippocampal synaptic plasticity impairment. Therefore, these receptors could be a potential and promising pharmacotherapy target for the treatment of autism.


Subject(s)
Autism Spectrum Disorder/metabolism , CA1 Region, Hippocampal/metabolism , Long-Term Potentiation/physiology , Receptors, Serotonin/metabolism , Animals , Autism Spectrum Disorder/physiopathology , Behavior, Animal/drug effects , Behavior, Animal/physiology , CA1 Region, Hippocampal/physiopathology , Disease Models, Animal , Elevated Plus Maze Test , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Female , GABA Agents/toxicity , Locomotion/drug effects , Locomotion/physiology , Long-Term Potentiation/drug effects , Neuronal Plasticity/drug effects , Neuronal Plasticity/physiology , Open Field Test , Phenols/pharmacology , Piperazines/pharmacology , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/physiopathology , Raphe Nuclei/metabolism , Raphe Nuclei/pathology , Rats , Receptors, Serotonin/drug effects , Serotonin Antagonists/pharmacology , Serotonin Receptor Agonists/pharmacology , Social Behavior , Sulfonamides/pharmacology , Valproic Acid/toxicity
9.
Exp Brain Res ; 238(4): 897-903, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32166345

ABSTRACT

Herein field recordings were utilized to test the effects of a transient period of pentylenetetrazol (PTZ) treatment on theta-burst long-term potentiation (LTP) at the Schaffer collateral-CA1 synapses as well as RT-PCR was used to investigate the effects of the combination of the pharmacological treatment and the theta-burst LTP induction on the expression of NMDA subunit mRNA in hippocampal slices. The slope of field excitatory postsynaptic potential (fEPSP) was unaffected while the population spike amplitude and area were increased by a transient period of PTZ treatment (3 mM, 10 min). After a theta burst, a brief PTZ exposure can lead to an enhancement of LTP as documented by fEPSP recording. The effect can be blocked by a selective NMDA receptor antagonist DL-AP5. An increase in the expression of GluN2B and GluN2A subunit mRNAs was also shown due to the combined treatment. The results indicate that the combined treatment increases the degree of NMDA-dependent LTP and are in accord with literature data on the subunit alterations of the hippocampal NMDA receptors. Moreover, our experimental paradigm can be used as a new approach to study the relevance of LTP-like phenomena and epileptic mechanisms.


Subject(s)
CA1 Region, Hippocampal , Epilepsy , Excitatory Amino Acid Antagonists/pharmacology , Excitatory Postsynaptic Potentials , GABA Antagonists/pharmacology , Long-Term Potentiation , Receptors, N-Methyl-D-Aspartate/metabolism , Transcranial Magnetic Stimulation , Animals , CA1 Region, Hippocampal/drug effects , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/physiopathology , Disease Models, Animal , Epilepsy/chemically induced , Epilepsy/metabolism , Epilepsy/physiopathology , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , GABA Antagonists/administration & dosage , Long-Term Potentiation/drug effects , Long-Term Potentiation/physiology , Male , Pentylenetetrazole/pharmacology , RNA, Messenger/drug effects , RNA, Messenger/metabolism , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/drug effects
10.
Planta Med ; 86(18): 1353-1362, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32851611

ABSTRACT

The objective of the current study was to investigate the anti-epileptogenic and anticonvulsant effects of Dorema ammoniacum gum, which is used in Iranian traditional medicine for the treatment of seizures. Animals received pentylenetetrazol (IP, 30 mg/kg/48 h) for inducing seizures. Five different seizure stages were evaluated for 20 min and parameters including maximum seizure stage, the latency to the onset of stage 4, stage 4 duration, and seizure duration were measured. D. ammoniacum (50 and 100 mg/kg) or its vehicle was administered 30 min before or after pentylenetetrazol injection in different groups. In addition, the effective dose of D. ammoniacum (100 mg/kg) on different seizure stages was compared with the common antiseizure drug phenobarbital. In another set of experiments, we investigated the effective dose of D. ammoniacum on fully kindled animals in which an interictal electroencephalogram was recorded by superficial electrodes placed on the skull. The results showed that D. ammoniacum administration, before and after pentylenetetrazol injections, significantly decreased seizure stage, seizure duration, stage 4 duration, and 1/stage 4 latency. The anti-epileptogenic effect of D. ammoniacum was about 50 to 60% of phenobarbital. In addition, D. ammoniacum significantly decreased seizure stage, seizure duration, stage 4 duration, and 1/stage 4 latency when administered to fully kindled animals but had no effect on the power of EEG sub-bands. These results indicate that D. ammoniacum has anti-epileptogenic and anticonvulsant effects in a chemical kindling model of seizures.


Subject(s)
Kindling, Neurologic , Pentylenetetrazole , Animals , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Brain , Iran , Rats , Seizures/chemically induced , Seizures/drug therapy
11.
Neurobiol Learn Mem ; 149: 98-106, 2018 03.
Article in English | MEDLINE | ID: mdl-29474954

ABSTRACT

Involvement of amygdalo-hippocampal substructures in patients with narcolepsy due to deficiencies in the orexinergic system, and the presence of hippocampus-dependent memory impairments in this disorder, have led us to investigate the effects of orexin 1 and 2 receptor antagonism in the basolateral amygdala (BLA) on long-term potentiation (LTP) of dentate gyrus (DG) granular cells. We used a 200-Hz high-frequency stimulation protocol in anesthetized rats. We studied the long-term synaptic plasticity of perforant path-dentate gyrus granule cells following the inactivation of orexin receptors before and after tetanic stimulation. LTP of the DG population spike was attenuated in the presence of orexin 1 and 2 receptor antagonism (treatment with SB-334867-A and TCS-OX2-29, respectively) in the BLA when compared to that observed following treatment with dimethyl sulfoxide (DMSO). However, the population excitatory post-synaptic potentials were not affected. Moreover, when orexin 1 and 2 receptors in the BLA were blocked after LTP induction, there were no differences between the DMSO and treatment groups. Our findings suggest that the orexinergic system of the BLA plays a modulatory role in the regulation of hippocampal plasticity in rats.


Subject(s)
Action Potentials/drug effects , Basolateral Nuclear Complex/drug effects , Dentate Gyrus/drug effects , Long-Term Potentiation/drug effects , Orexin Receptor Antagonists/pharmacology , Perforant Pathway/drug effects , Action Potentials/physiology , Animals , Basolateral Nuclear Complex/physiology , Benzoxazoles/pharmacology , Dentate Gyrus/physiology , Electric Stimulation , Isoquinolines/pharmacology , Long-Term Potentiation/physiology , Naphthyridines , Neural Pathways/drug effects , Neural Pathways/physiology , Neurons/drug effects , Neurons/physiology , Perforant Pathway/physiology , Pyridines/pharmacology , Rats , Urea/analogs & derivatives , Urea/pharmacology
12.
Synapse ; 70(8): 325-35, 2016 08.
Article in English | MEDLINE | ID: mdl-27029021

ABSTRACT

Addictive drugs modulate synaptic transmission in the meso-corticolimbic system by hijacking normal adaptive forms of experience-dependent synaptic plasticity. Psychostimulants such as METH have been shown to affect hippocampal synaptic plasticity, albeit with a less understood synaptic mechanism. METH is one of the most addictive drugs that elicit long-term alterations in the synaptic plasticity in brain areas involved in reinforcement learning and reward processing. Dopamine transporter (DAT) is one of the main targets of METH. As a substrate for DAT, METH decreases dopamine uptake and increases dopamine efflux via the transporter in the target brain regions such as nucleus accumbens (NAc) and hippocampus. Due to cross talk between NAc and hippocampus, stimulation of NAc has been shown to alter hippocampal plasticity. In this study, we tested the hypothesis that manipulation of glutamatergic and GABA-ergic systems in the shell-NAc modulates METH-induced enhancement of long term potentiation (LTP) in the hippocampus. Rats treated with METH (four injections of 5 mg/kg) exhibited enhanced LTP as compared to saline-treated animals. Intra-NAc infusion of muscimol (GABA receptor agonist) decreased METH-induced enhancement of dentate gyrus (DG)-LTP, while infusion of AP5 (NMDA receptor antagonist) prevented METH-induced enhancement of LTP. These data support the interpretation that reducing NAc activity can ameliorate METH-induced hippocampal LTP through a hippocampus-NAc-VTA circuit loop. Synapse 70:325-335, 2016. © 2016 Wiley Periodicals, Inc.


Subject(s)
Dopamine Agents/pharmacology , Hippocampus/physiology , Long-Term Potentiation , Methamphetamine/pharmacology , Nucleus Accumbens/physiology , Receptors, GABA/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Dentate Gyrus/metabolism , Dentate Gyrus/physiology , GABA Agonists/pharmacology , Hippocampus/drug effects , Hippocampus/metabolism , Male , Muscimol/pharmacology , Nucleus Accumbens/metabolism , Rats , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
13.
Neurosciences (Riyadh) ; 20(3): 225-9, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26166589

ABSTRACT

OBJECTIVE: To evaluate the effects of Catechin (CAT) on memory acquisition and retrieval in the animal model of sporadic alzheimer`s disease (sAD) induced by intracerebroventricular (icv) injection of streptozotocin (STZ) in passive avoidance memory test. METHODS: Thirty adult rats were divided into 5 experimental groups (n=6). Animals were treated by icv saline/STZ (3 mg/kg) injection at day one and 3 after cannulation. The STZ+CAT group received 40 mg/kg CAT by daily gavages for 10 days, after icv STZ treatment and before training. The step-through latency (STL) and time spent in the dark compartment (TDC) were evaluated to examine the memory acquisition and retrieval. All tests were performed in Qom University of Medical Sciences, Qom, Iran, from April to December 2013. RESULTS: The STZ treatment significantly decreased STL and increased the number of entries to the dark compartment on the training day. It also increased TDC, on day one and 7 after training. Pre-training gavage of CAT reversed the STL significantly (p=0.027). The CAT treatment also decreased the TDC in both early and late retrieval, in respect to STZ group. CONCLUSION: This data suggests that CAT as an antioxidant could improve both memory acquisition and retrieval in the animal model of sAD.


Subject(s)
Alzheimer Disease/prevention & control , Catechin/therapeutic use , Memory Disorders/prevention & control , Administration, Oral , Alzheimer Disease/etiology , Animals , Avoidance Learning/drug effects , Catechin/administration & dosage , Catechin/pharmacology , Male , Memory Disorders/etiology , Rats , Rats, Wistar , Streptozocin/toxicity
14.
Physiol Behav ; 278: 114521, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38492911

ABSTRACT

Epilepsy is a neurological condition distinguished by recurrent and unexpected seizures. Astrocytic channels and transporters are essential for maintaining normal neuronal functionality. The astrocytic water channel, aquaporin-4 (AQP4), which plays a pivotal role in regulating water homeostasis, is a potential target for epileptogenesis. In present study, we examined the effect of different doses (10, 50, 100 µM and 5 mM) of AQP4 inhibitor, 2-nicotinamide-1, 3, 4-thiadiazole (TGN-020), during kindling acquisition, on seizure parameters and seizure-induced cognitive impairments. Animals were kindled by injection of pentylenetetrazole (PTZ: 37.5 mg/kg, i.p.). TGN-020 was administered into the right lateral cerebral ventricle 30 min before PTZ every alternate day. Seizure parameters were assessed 20 min after PTZ administration. One day following the last PTZ injection, memory performance was investigated using spontaneous alternation in Y-maze and novel object recognition (NOR) tests. The inhibition of AQP4 during the kindling process significantly decreased the maximal seizure stage and seizure duration (two-way ANOVA, P = 0.0001) and increased the latency of seizure onset and the number of PTZ injections required to induce different seizure stages (one-way ANOVA, P = 0.0001). Compared to kindled rats, the results of the NOR tests showed that AQP4 inhibition during PTZ-kindling prevented recognition memory impairment. Based on these results, AQP4 could be involved in seizure development and seizure-induced cognitive impairment. More investigation is required to fully understand the complex interactions between seizure activity, water homeostasis, and cognitive dysfunction, which may help identify potential therapeutic targets for these conditions.


Subject(s)
Aquaporin 4 , Cognitive Dysfunction , Kindling, Neurologic , Niacinamide , Thiadiazoles , Animals , Rats , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/drug therapy , Niacinamide/administration & dosage , Niacinamide/analogs & derivatives , Pentylenetetrazole , Seizures/chemically induced , Seizures/complications , Seizures/drug therapy , Thiadiazoles/administration & dosage , Water/adverse effects , Aquaporin 4/antagonists & inhibitors
15.
Behav Brain Res ; 469: 115043, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38729219

ABSTRACT

Social hierarchy is a fundamental feature of social organization that can influence brain and emotional processing regarding social ranks. Several areas, including the medial prefrontal cortex (mPFC), the hippocampus, and the basolateral nucleus of the amygdala (BLA), are recognized to be involved in the regulation of emotional processing. However, its delicate structural correlates in brain regions are poorly understood. To address this issue, social hierarchy in home-caged sibling Wistar rats (three male rats/cage) was determined by employing a social confrontation tube test (postnatal weeks 9-12). Then, locomotor activity and anxiety-like behaviors were evaluated using an open-field test (OFT) and elevated plus-maze (EPM) at 13 weeks of age. The rapid Golgi impregnation method was conducted to quantify the spine density of the first secondary branch of the primary dendrite in 20 µm length. The results indicated that dominant rats had significantly higher anxiety-like behaviors compared to subordinates, as was evident by lower open-arm entries and time spent in the EPM and lower entries and time spent in the center of OFT. The spine density analysis revealed a significantly higher number of spines in subordinates compared to the dominant rats in dmPFC pyramidal neurons and the apical and basal dendrites of hippocampal CA1 pyramidal neurons. However, the spine density of pyramidal-like neurons in the BLA was higher in dominant rats. Our findings suggest that dominant social rank is associated with higher anxiety and differential density of the dendritic spine in the prefrontal cortex and limbic regions of the brain in male rats.


Subject(s)
Anxiety , Dendritic Spines , Hierarchy, Social , Prefrontal Cortex , Rats, Wistar , Animals , Prefrontal Cortex/pathology , Male , Dendritic Spines/physiology , Anxiety/pathology , Anxiety/physiopathology , Rats , Pyramidal Cells/pathology , Pyramidal Cells/physiology , Behavior, Animal/physiology , Limbic System/pathology , Basolateral Nuclear Complex/pathology , Hippocampus/pathology
16.
Neuropharmacology ; : 110057, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964596

ABSTRACT

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by alterations and imbalances in multiple brain neurochemical systems, particularly the serotonergic neurotransmission. This includes changes in serotonin (5-HT) levels, aberrations in 5-HT transporter activity, and decreased synthesis and expression of 5-HT receptors (5-HT7Rs). The exact role of the brain 5-HT system in the development of ASD remains unclear, with conflicting evidence on its involvement. Recently, we have reported research has shown a significant decrease in serotonergic neurons originating from the raphe nuclei and projecting to the CA1 region of the dorsal hippocampus in autistic-like rats. Additionally, we have shown that chronic activation of 5-HT7Rs reverses the effects of autism induction on synaptic plasticity. However, the functional significance of 5-HT7Rs at the cellular level is still not fully understood. This study presents new evidence indicating an upregulation of 5-HT7R in the CA1 subregion of the hippocampus following the induction of autism. The present account also demonstrates that activation of 5-HT7R with its agonist LP-211 can reverse electrophysiological abnormalities in hippocampal pyramidal neurons in a rat model of autism induced by prenatal exposure to VPA. Additionally, in vivo administration of LP-211 resulted in improvements in motor coordination, novel object recognition, and a reduction in stereotypic behaviors in autistic-like offspring. The findings suggest that dysregulated expression of 5-HT7Rs may play a role in the pathophysiology of ASD, and that agonists like LP-211 could potentially be explored as a pharmacological treatment for autism spectrum disorder.

17.
J Comput Neurosci ; 34(3): 489-504, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23661228

ABSTRACT

Neural synchronization is considered as an important mechanism for information processing. In addition, based on recent neurophysiologic findings, it is believed that astrocytes regulate the synaptic transmission of neuronal networks. Therefore, the present study focused on determining the functional contribution of astrocytes in neuronal synchrony using both computer simulations and extracellular field potential recordings. For computer simulations, as a first step, a minimal network model is constructed by connecting two Morris-Lecar neuronal models. In this minimal model, astrocyte-neuron interactions are considered in a functional-based procedure. Next, the minimal network is extended and a biologically plausible neuronal population model is developed which considers functional outcome of astrocyte-neuron interactions too. The employed structure is based on the physiological and anatomical network properties of the hippocampal CA1 area. Utilizing these two different levels of modeling, it is demonstrated that astrocytes are able to change the threshold value of transition from synchronous to asynchronous behavior among neurons. In this way, variations in the interaction between astrocytes and neurons lead to the emergence of synchronous/asynchronous patterns in neural responses. Furthermore, population spikes are recorded from CA1 pyramidal neurons in rat hippocampal slices to validate the modeling results. It demonstrates that astrocytes play a primary role in neuronal firing synchronicity and synaptic coordination. These results may offer a new insight into understanding the mechanism by which astrocytes contribute to stabilizing neural activities.


Subject(s)
Action Potentials/physiology , Astrocytes/physiology , Models, Neurological , Pyramidal Cells/physiology , Action Potentials/drug effects , Analysis of Variance , Animals , Astrocytes/drug effects , Biophysics , Computer Simulation , Convulsants/pharmacology , Electric Stimulation , Hippocampus/cytology , Male , Minocycline/pharmacology , Pentylenetetrazole/pharmacology , Pyramidal Cells/drug effects , Rats , Rats, Wistar , Time Factors
18.
IBRO Neurosci Rep ; 14: 293-307, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37388501

ABSTRACT

This study aimed to examine the effects of the ventral tegmental area (VTA) and the locus coeruleus (LC) patterned electrical stimulation on hippocampal-dependent learning and hippocampal neurogenesis in adult mouse. For this, mice were given unilateral electrical stimulation of VTA or LC using phasic or tonic stimulation protocols. Behavior acquisition rates were evaluated using the Barnes maze (BM) and a passive avoidance (PA) task. Cell proliferation was measured in the dorsal (dDG), intermediate (iDG) and ventral (vDG) dentate gyrus (DG) using Ki67 immunohistochemistry. We showed that the levels of cell proliferation were significantly different in three highlighted parts of the DG. The behavioral testing paradigms themselves were sufficient to alter cell proliferation indices along the dentate gyrus. The phasic LC modulation treatment enhanced behavioral acquisition of the BM and cell proliferation in the dDG, while tonic VTA stimulation improved PA acquisition and increased cell proliferation in the iDG. It is concluded that electrical impulses-evoked phasic or tonic activity patterns in the LC and VTA could modulate endogenous and learning dependent disparity of cell proliferation along the adult mouse DG.

19.
Physiol Behav ; 269: 114286, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37402416

ABSTRACT

Social communication and interaction deficits, memory impairment, and anxiety-like behavior are characterized in many people identified with autism spectrum disorder (ASD). A thorough understanding of the specific aspects that contribute to the deficiencies associated with ASD can aid research into the etiology of the disorder while also providing targets for more effective intervention. As part of the ASD pathophysiology, alterations in synaptogenesis and abnormal network connections were seen in high-order brain areas, which control social behavior and communication. The early emergence of microglia during nervous system development may contribute to synaptic dysfunction and the pathobiology of ASD. Since aquaporin-4 (AQP4) appears to be required for the basic procedures of synapse activation, certain behavioral and cognitive impairments as well as disturbance in water homeostasis might likely arise from AQP4 deficiency. Here, through the measurement of the water content of the hippocampus and behavioral experiments we aim to explore the contribution of astrocytic AQP4 to the autism-like behavior induced by prenatal valproic acid (VPA) exposure and whether inhibition of AQP4 per se can induce autistic-like behavior in control rats. Microinjection of TGN-020 (10 µM, i.c.v), a specific AQP4 inhibitor, for 7 successive days before behavioral tasks from postnatal day 28 to 35 revealed that inhibition of AQP4 in the control offspring caused lower social interaction and locomotor activity, higher anxiety, and decreased ability to recognize novel objects, very similar to the behavioral changes observed in offspring prenatally exposed to VPA. However, VPA-exposed offspring treated with TGN-020, showed no further remarkable behavioral impairments than those detected in the autistic-like rats. Furthermore, both control offspring treated with TGN-020 and offspring exposed to VPA had a considerable accumulation of water in their hippocampi. But AQP4 inhibition did not affect the water status of the autistic-like rats. The findings of this study revealed that control offspring exhibited similar hippocampal water retention and behavioral impairments that were observed in maternal VPA-exposed offspring following inhibition of astrocytic AQP4, whereas, in autistic-like rats, it did not produce any significant change in water content and behaviors. Findings suggest that AQP4 deficiency could be associated with autistic disorder and may be a potential pharmaceutical target for treating autism in the future.


Subject(s)
Aquaporins , Autism Spectrum Disorder , Autistic Disorder , Prenatal Exposure Delayed Effects , Pregnancy , Humans , Female , Rats , Animals , Valproic Acid/toxicity , Autistic Disorder/chemically induced , Autism Spectrum Disorder/chemically induced , Maternal Exposure , Prenatal Exposure Delayed Effects/chemically induced , Social Behavior , Aquaporins/pharmacology , Disease Models, Animal , Behavior, Animal
20.
Life Sci ; 330: 121969, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37541575

ABSTRACT

AIMS: Drug addiction is an aberrant learning process that involves the recruitment of memory systems. We have previously demonstrated that morphine exposure causes maladaptive synaptic plasticity which involved hippocampal glial cells, especially astrocytes. Morphine addiction has been associated with astrocytic connexin 43 (Cx43), which plays a role in synaptic homeostasis. This study aimed to examine the role of hippocampal astrocytic Cx43 in morphine-induced maladaptive plasticity as a mechanism of addiction. MAIN METHODS: Male rats were injected with morphine (10 mg/kg) subcutaneously every 12 h for nine days to induce dependence. Cx43 was inhibited by TAT-Gap19 (1 µl/1 nmol) microinjection in the CA1 region of the hippocampus 30 min before each morning morphine injection. Field potential recordings were used to assess synaptic plasticity. fEPSP was recorded from the CA1 area following CA3 stimulation. KEY FINDINGS: Electrophysiological results showed that morphine treatment altered baseline synaptic responses. It also appears that morphine treatment augmented long-term potentiation (LTP) compared with the control group. Hippocampal astrocytic Cx43 inhibition, with the TAT-Gap19, undermines these effects of morphine on baseline synaptic responses and LTP. Despite this, long-term depression (LTD) did not differ significantly between the groups. Additionally, in the morphine-receiving group, inhibition of Cx43 significantly reduced the paired-pulse index at an 80-millisecond inter-pulse interval when assessing short-term plasticity. SIGNIFICANCE: The results of this study demonstrated that inhibiting Cx43 reduced synaptic plasticity induced by morphine. It can be concluded that hippocampal astrocytes through Cx43 are involved in morphine-induced metaplasticity.


Subject(s)
Connexin 43 , Morphine , Animals , Male , Rats , Astrocytes , CA1 Region, Hippocampal , Hippocampus , Long-Term Potentiation , Morphine/pharmacology , Neuronal Plasticity
SELECTION OF CITATIONS
SEARCH DETAIL