Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Bioorg Chem ; 114: 104979, 2021 09.
Article in English | MEDLINE | ID: mdl-34140181

ABSTRACT

A series of aryl phenoxy methyl triazole conjugated with thiosemicarbazides were designed, synthesized, and evaluated for their tyrosinase inhibitory activities in the presence of l-dopa and l-tyrosine as substrates. All the compounds showed tyrosinase inhibition in the sub-micromolar concentration. Among the derivatives, compound 9j bearing benzyl displayed exceptionally high potency against tyrosinase with IC50 value of 0.11 µM and 0.17 µM in the presence of l-tyrosine and l-dopa as substrates which is significantly lower than that of kojic acid as the positive control with an IC50 value of 9.28 µM for l-tyrosine and 9.30 µM for l-dopa. According to Lineweaver-Burk plot, 9j demonstrated an uncompetitive type of inhibition in the kinetic assay. Also, in vitro antioxidant activities determined by DPPH assay recorded an IC50 value of 68.43 µM for 9i. The melanin content of 9j was determined on B16F10 melanoma human cells which demonstrated a significant reduction of the melanin content. Moreover, the binding energies corresponding to the same ligand as well as computer-aided drug-likeness and pharmacokinetic studies were also carried out. Compound 9j also possessed metal chelation potential correlated to its high anti-TYR activity.


Subject(s)
Acetamides/pharmacology , Enzyme Inhibitors/pharmacology , Monophenol Monooxygenase/antagonists & inhibitors , Semicarbazides/pharmacology , Skin Lightening Preparations/pharmacology , Triazoles/pharmacology , Acetamides/chemical synthesis , Acetamides/metabolism , Acetamides/pharmacokinetics , Cell Line, Tumor , Chelating Agents/chemical synthesis , Chelating Agents/metabolism , Chelating Agents/pharmacokinetics , Chelating Agents/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacokinetics , Humans , Melanins/metabolism , Molecular Docking Simulation , Molecular Structure , Monophenol Monooxygenase/metabolism , Protein Binding , Semicarbazides/chemical synthesis , Semicarbazides/metabolism , Semicarbazides/pharmacokinetics , Skin Lightening Preparations/chemical synthesis , Skin Lightening Preparations/metabolism , Skin Lightening Preparations/pharmacokinetics , Structure-Activity Relationship , Triazoles/chemical synthesis , Triazoles/metabolism , Triazoles/pharmacokinetics
2.
Chem Biodivers ; 17(8): e2000285, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32478439

ABSTRACT

Tyrosinase is a type 3 copper enzyme responsible for skin pigmentation disorders, skin cancer, and enzymatic browning of vegetables and fruits. In the present article, 12 small molecules of 2-benzylidenehydrazine-1-carbothioamide were designed, synthesized and evaluated for their anti-tyrosinase activities followed by molecular docking and pharmacophore-based screening. Among synthesized thiosemicarbazone derivatives, one compound, (2E)-2-[(4-nitrophenyl)methylidene]hydrazine-1-carbothioamide, is the strongest inhibitor of mushroom tyrosinase with IC50 of 0.05 µM which demonstrated a 128-fold increase in potency compared to the positive control. Kinetic studies also revealed mix type inhibition by this compound. Docking studies confirmed the complete fitting of the synthesized compounds into the tyrosinase active site. The results underline the potential of 2-benzylidenehydrazine-1-carbothioamides as potent pharmacophore to extend the tyrosinase inhibition in drug discovery.


Subject(s)
Benzylidene Compounds/pharmacology , Enzyme Inhibitors/pharmacology , Hydrazines/chemistry , Monophenol Monooxygenase/antagonists & inhibitors , Thioamides/chemistry , Benzylidene Compounds/chemistry , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Kinetics , Molecular Docking Simulation , Structure-Activity Relationship
3.
Res Pharm Sci ; 16(4): 425-435, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34447450

ABSTRACT

BACKGROUND AND PURPOSE: Tyrosinase enzyme has a key role in melanin biosynthesis by converting tyrosine into dopaquinone. It also participates in the enzymatic browning of vegetables by polyphenol oxidation. Therefore, tyrosinase inhibitors are useful in the fields of medicine, cosmetics, and agriculture. Many tyrosinase inhibitors having drawbacks have been reported to date; so, finding new inhibitors is a great need. EXPERIMENTAL APPROACH: A variety of 6-hydroxy-3,4-dihydronaphthalenone chalcone-like analogs (C1-C10) have been synthesized by aldol condensation of 6-hydroxy tetralone and differently substituted benzaldehydes. The compounds were evaluated for their inhibitory effect on mushroom tyrosinase by a spectrophotometric method. Moreover, the inhibition manner of the most active compound was determined by Lineweaver-Burk plots. Docking study was done using AutoDock 4.2. The drug-likeness scores and ADME features of the active derivatives were also predicted. RESULTS/FINDINGS: Most of the compounds showed remarkable inhibitory activity against the tyrosinase enzyme. 6-Hydroxy-2-(3,4,5-trimethoxybenzylidene)-3,4-dihydronaphthalen-1(2H)-one (C2) was the most potent derivative amongst the series with an IC50 value of 8.8 µM which was slightly more favorable to that of the reference kojic acid (IC50 = 9.7 µM). Inhibitory kinetic studies revealed that C2 behaves as a competitive inhibitor. According to the docking results, compound C2 formed the most stable enzyme-inhibitor complex, mainly via establishing interactions with the two copper ions in the active site. In silico drug-likeness and pharmacokinetics predictions for the proposed tyrosinase inhibitors revealed that most of the compounds including C2 have proper drug-likeness scores and pharmacokinetic properties. CONCLUSION AND IMPLICATIONS: Therefore, C2 could be suggested as a promising tyrosinase inhibitor that might be a good lead compound in medicine, cosmetics, and the food industry, and further drug development of this compound might be of great interest.

4.
J Inorg Biochem ; 147: 54-64, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25770009

ABSTRACT

Three new thiourea ligands derived from the condensation of aroyl- and aryl-isothiocyanate derivatives with 2,6-diaminopyridine, named 1,1'-(pyridine-2,6-diyl)bis(3-(benzoyl)thiourea) (L1), 1,1'-(pyridine-2,6-diyl)bis(3-(2-chlorobenzoyl)thiourea) (L2) and 1,1'-(pyridine-2,6-diyl)bis(3-(4-chlorophenyl)thiourea) (L3), their oxido-vanadium(IV) complexes, namely [VO(L1('))(H2O)] (C1), [VO(L2('))(H2O)] (C2) and [VO(L3('))(H2O)] (C3), and also, dioxo-vanadium(V) complex containing 4-hydroxy-2,6-pyridine dicarboxylic acid (chelidamic acid, H2dipic-OH) and metformin (N,N-dimethylbiguanide, Met), named [H2Met][VO2(dipic-OH)]2·H2O (C4), were synthesized and characterized by elemental analysis, FTIR and (1)H NMR and UV-visible spectroscopies. Proposed structures for free thiourea ligands and their vanadium complexes were corroborated by applying geometry optimization and conformational analysis. Solid state structure of complex [H2Met][VO2(dipic-OH)]2·H2O (triclinic, Pi) was fully determined by single crystal X-ray diffraction analysis. In this complex, metformin is double protonated and acted as counter ion. The antibacterial properties of these compounds were investigated in vitro against standard Gram-positive and Gram-negative bacterial strains. The experiments showed that vanadium(IV) complexes had the superior antibacterial activities than novel thiourea derivatives and vanadium(V) complex against all Gram-positive and Gram-negative bacterial strains.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Coordination Complexes/chemical synthesis , Pyridones/chemistry , Thiourea/chemistry , Vanadium/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Coordination Complexes/chemistry , Coordination Complexes/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL