Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Phytopathology ; 114(2): 464-473, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37565813

ABSTRACT

Frequent fungicide applications are required to manage grapevine powdery mildew (Erysiphe necator). However, this practice is costly and has led to widespread fungicide resistance. A method of monitoring in-field fungicide efficacy could help growers maximize spray-interval length, thereby reducing costs and the rate of fungicide resistance emergence. The goal of this study was to evaluate if hyperspectral sensing in the visible to shortwave infrared range (400 to 2,400 nm) can quantify foliar fungicide efficacy on grape leaves. Commercial formulations of metrafenone, Bacillus mycoides isolate J (BmJ), and sulfur were applied on Chardonnay grapevines in vineyard or greenhouse settings. Foliar reflectance was measured with handheld hyperspectral spectroradiometers at multiple days post-application. Fungicide efficacy was estimated as a proxy for fungicide residue and disease control measured with the Blackbird microscopy imaging robot. Treatments could be differentiated from the untreated control with an accuracy of 73.06% for metrafenone, 67.76% for BmJ, and 94.10% for sulfur. The change in spectral reflectance was moderately correlated with the cube root of the area under the disease progress curve for metrafenone- and sulfur-treated samples (R2 = 0.38 and 0.36, respectively) and with sulfur residue (R2 = 0.42). BmJ treatment impacted foliar physiology by enhancing the leaf mass/area and reducing the nitrogen and total phenolic content as estimated from spectral reflectance. The results suggest that hyperspectral sensing can be used to monitor in-situ fungicide efficacy, and the prediction accuracy depends on the fungicide and the time point measured. The ability to monitor in-situ fungicide efficacy could facilitate more strategic fungicide applications and promote sustainable grapevine protection. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Bacillus , Benzophenones , Fungicides, Industrial , Fungicides, Industrial/pharmacology , Plant Diseases/prevention & control , Sulfur
2.
J Proteome Res ; 20(5): 2851-2866, 2021 05 07.
Article in English | MEDLINE | ID: mdl-33890474

ABSTRACT

Diaphorina citri is a vector of "Candidatus Liberibacter asiaticus" (CLas), associated with citrus greening disease. D. citri exhibit at least two color morphotypes, blue and non-blue, the latter including gray and yellow morphs. Blue morphs have a greater capacity for long-distance flight and transmit CLas less efficiently as compared to non-blue morphs. Differences in physiology and immunity between color morphs of the insect vector may influence disease epidemiology and biological control strategies. We evaluated the effect of CLas infection on color morph and sex-specific proteomic profiles of D. citri. Immunity-associated proteins were more abundant in blue morphs as compared to non-blue morphs but were upregulated at a higher magnitude in response to CLas infection in non-blue insects. To test for differences in color morph immunity, we measured two phenotypes: (1) survival of D. citri when challenged with the entomopathogenic fungus Beauveria bassiana and (2) microbial load of the surface and internal microbial communities. Non-blue color morphs showed higher mortality at four doses of B. bassinana, but no differences in microbial load were observed. Thus, color morph polyphenism is associated with two distinct proteomic immunity phenotypes in D. citri that may impact transmission of CLas and resistance to B. bassiana under some conditions.


Subject(s)
Citrus , Hemiptera , Rhizobiaceae , Animals , Female , Insect Vectors , Male , Plant Diseases , Proteomics , Rhizobiaceae/genetics
3.
Microb Ecol ; 78(1): 206-222, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30474731

ABSTRACT

The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama, is an economic insect pest in most citrus-growing regions and the vector of 'Candidatus Liberibacter asiaticus' (CLas), one of at least three known bacteria associated with Huanglongbing (HLB or citrus greening disease). D. citri harbors bacterial endosymbionts, including Wolbachia pipientis (strain Wolbachia wDi), 'Candidatus Carsonella ruddii,' and 'Candidatus Profftella armatura.' Many important functions of these bacteria can be inferred from their genome sequences, but their interactions with each other, CLas, and their D. citri host are poorly understood. In the present study, the titers of the endosymbionts in different tissues, in each sex, and in insects reared on healthy citrus (referred to as unexposed) and CLas-infected citrus (referred to as CLas-exposed) D. citri were investigated using real-time, quantitative PCR (qPCR) using two different quantitative approaches. Wolbachia and CLas were detected in all insect tissues. The titer of Wolbachia was higher in heads of CLas-exposed males as compared to unexposed males. In males and females, Wolbachia titer was highest in the Malpighian tubules. The highest titer of CLas was observed in the gut. Profftella and Carsonella titers were significantly reduced in the bacteriome of CLas-exposed males compared with that of unexposed males, but this effect was not observed in females. In ovaries of CLas-exposed females, the Profftella and Carsonella titers were increased as compared to non-exposed females. CLas appeared to influence the overall levels of the symbionts but did not drastically perturb the overall microbial community structure. In all the assessed tissues, CLas titer in males was significantly higher than that of females using absolute quantification. These data provide a better understanding of multi-trophic interactions regulating symbiont dynamics in the HLB pathosystem.


Subject(s)
Citrus/microbiology , Endophytes/physiology , Hemiptera/microbiology , Plant Diseases/microbiology , Rhizobiaceae/physiology , Symbiosis , Animals , Citrus/parasitology , Endophytes/genetics , Endophytes/isolation & purification , Female , Hemiptera/physiology , Insect Vectors/microbiology , Insect Vectors/physiology , Male , Rhizobiaceae/genetics , Rhizobiaceae/isolation & purification , Wolbachia/genetics , Wolbachia/isolation & purification , Wolbachia/physiology
4.
Arch Microbiol ; 199(1): 51-61, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27496158

ABSTRACT

N-Acyl-homoserine lactones (AHLs)-dependent quorum sensing (QS) system(s) is recruited by the soft rot bacterium Dickeya chrysanthemi for coordinating its social activities such as secretion of plant cell wall-degrading enzymes, while the main signal molecule and quantity dependence of virulence to QS in this bacterium have not been clarified. To do this end, the involvement of AHLs in African violet leaves and potato tuber maceration; swarming motility; pectate lyase and polygalacturonase enzymes production and in planta expression of virulence genes including pelE, pehX and pemA by electroporating two quorum-quenching vectors. The expression of two types of AHL-lactonase expressing vector caused dramatic decrease in swarming motility, production of pectinolytic enzymes and macerating of plant tissues. The maximum ability of quenching of QS in repression of D. chrysanthemi virulence was assessed quantitatively by q-RT-PCR, as expression of pelE, pehX and pemA genes were decreased 90.5-92.18 % in quenched cells. We also showed that virulence and pathogenicity of this bacterium was under the control of DHL-dependent QS system and that the existence of second DHL operating system is probable for this bacterium. Thus, this signal molecule would be the key point for future research to design DHL-specific lactonase enzymes using bioinformatics methods.


Subject(s)
Bacterial Proteins/genetics , Dickeya chrysanthemi/genetics , Gene Expression Regulation, Bacterial , Plant Diseases/microbiology , Quorum Sensing , Solanum tuberosum/microbiology , Virulence Factors/genetics , Acyl-Butyrolactones/metabolism , Bacterial Proteins/metabolism , Carboxylic Ester Hydrolases/genetics , Carboxylic Ester Hydrolases/metabolism , Dickeya chrysanthemi/physiology , Polygalacturonase/metabolism , Polysaccharide-Lyases/genetics , Polysaccharide-Lyases/metabolism , Virulence Factors/metabolism
5.
Iran J Med Sci ; 41(5): 406-14, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27582590

ABSTRACT

BACKGROUND: Glutaminase (EC 3.5.1.2) catalyzes the hydrolytic degradation of L-glutamine to L-glutamic acid and has been introduced for cancer therapy in recent years. The present study was an in silico analysis of glutaminase to further elucidate its structure and physicochemical properties. METHODS: Forty glutaminase protein sequences from different species of Escherichia and Bacillus obtained from the UniProt Protein Database were characterized for homology search, physiochemical properties, phylogenetic tree construction, motif, superfamily search, and multiple sequence alignment. RESULTS: The sequence level homology was obtained among different groups of glutaminase enzymes, which belonged to superfamily serine-dependent ß-lactamases and penicillin-binding proteins. The phylogenetic tree constructed indicated 2 main clusters for the glutaminases. The distribution of common ß-lactamase motifs was also observed; however, various non-common motifs were also observed. CONCLUSION: Our results showed that the existence of a conserved motif with a signature amino-acid sequence of ß-lactamases could be considered for the genetic engineering of glutaminases in view of their potential application in cancer therapy. Nonetheless, further research is needed to improve the stability of glutaminases and decrease their immunogenicity in both medical and food industrial applications.

6.
Curr Opin Insect Sci ; 56: 101025, 2023 04.
Article in English | MEDLINE | ID: mdl-36990150

ABSTRACT

Diaphorina citri, the Asian citrus psyllid, is a vector of Candidatus Liberibacter asiaticus (CLas), the causal agent of huanglongbing (HLB), the world's most serious disease of citrus. Owing to the relevancy and urgency of HLB research, the study of transmission biology in the HLB pathosystem has been a significant area of research. The focus of this article is to summarize and synthesize recent advancements in transmission biology between D. citri and CLas to create an updated view of the research landscape and to identify avenues for future research. Variability appears to play an important role in the transmission of CLas by D. citri. We advocate that it is important to understand the genetic basis for and environmental factors contributing to CLas transmission and how that variation may be exploited to develop and improve HLB control tactics.


Subject(s)
Citrus , Hemiptera , Rhizobiaceae , Animals , Liberibacter , Rhizobiaceae/genetics , Hemiptera/physiology , Plant Diseases
7.
PLoS One ; 14(5): e0216599, 2019.
Article in English | MEDLINE | ID: mdl-31095639

ABSTRACT

Diaphorina citri is a vector of 'Candidatus Liberibacter asiaticus,' (CLas), associated with Huanglongbing, (HLB, or citrus greening) disease in citrus. D. citri exhibits three different color morph variants, blue, gray and yellow. Blue morphs have a greater capacity for long-distance flight as compared to non-blue morphs, but little else is known about how color morphology influences vector characteristics. In this study, we show that the color morphology of the insect is derived from pigmented cells of the fat body. Blue morphs acquire a lower level of CLas in their bodies from infected trees as compared to their gray and yellow conspecifics, referred to in this paper collectively as non-blue morphs. Accordingly, CLas titer in citrus leaves inoculated by non-blue insects was 6-fold higher than in leaves inoculated by blue insects. Blue color morphs harbored lower titers of Wolbachia and 'Candidatus Profftella armatura,' two of the D. citri bacterial endosymbionts. Expression of hemocyanin, a copper-binding oxygen transport protein responsible for the blue coloration of hemolymph of other arthropods and mollusks, was previously correlated with blue color morphology and is highly up-regulated in insects continuously reared on CLas infected citrus trees. Based on our results, we hypothesized that a reduction of hemocyanin expression would reduce the D. citri immune response and an increase in the titer of CLas would be observed. Surprisingly, a specific 3-fold reduction of hemocyanin-1 transcript levels using RNA silencing in blue adult D. citri morphs had an approximately 2-fold reduction on the titer of CLas. These results suggest that hemocyanin signaling from the fat body may have multiple functions in the regulation of bacterial titers in D. citri, and that hemocyanin is one of multiple psyllid genes involved in regulating CLas titer.


Subject(s)
Citrus/microbiology , Hemiptera/microbiology , Host-Pathogen Interactions , Insect Vectors/microbiology , Plant Diseases/microbiology , Rhizobiaceae/physiology , Symbiosis , Animals , Citrus/parasitology , Color , Hemiptera/physiology , Hemocyanins/metabolism , Insect Vectors/physiology , Rhizobiaceae/isolation & purification
8.
PLoS One ; 13(4): e0195804, 2018.
Article in English | MEDLINE | ID: mdl-29652934

ABSTRACT

Genetic variability in insect vectors is valuable to study vector competence determinants and to select non-vector populations that may help reduce the spread of vector-borne pathogens. We collected and tested vector competency of 15 isofemale lines of Asian citrus psyllid, Diaphorina citri, vector of 'Candidatus Liberibacter asiaticus' (CLas). CLas is associated with huanglongbing (citrus greening), the most serious citrus disease worldwide. D. citri adults were collected from orange jasmine (Murraya paniculata) hedges in Florida, and individual pairs (females and males) were caged on healthy Murraya plants for egg laying. The progeny from each pair that tested CLas-negative by qPCR were maintained on Murraya plants and considered an isofemale line. Six acquisition tests on D. citri adults that were reared as nymphs on CLas-infected citrus, from various generations of each line, were conducted to assess their acquisition rates (percentage of qPCR-positive adults). Three lines with mean acquisition rates of 28 to 32%, were classified as 'good' acquirers and three other lines were classified as 'poor' acquirers, with only 5 to 8% acquisition rates. All lines were further tested for their ability to inoculate CLas by confining CLas-exposed psyllids for one week onto healthy citrus leaves (6-10 adults/leaf/week), and testing the leaves for CLas by qPCR. Mean inoculation rates were 19 to 28% for the three good acquirer lines and 0 to 3% for the three poor acquirer lines. Statistical analyses indicated positive correlations between CLas acquisition and inoculation rates, as well as between CLas titer in the psyllids and CLas acquisition or inoculation rates. Phenotypic and molecular characterization of one of the good and one of the poor acquirer lines revealed differences between them in color morphs and hemocyanin expression, but not the composition of bacterial endosymbionts. Understanding the genetic architecture of CLas transmission will enable the development of new tools for combating this devastating citrus disease.


Subject(s)
Citrus/microbiology , Hemiptera/microbiology , Hemiptera/physiology , Insect Vectors/microbiology , Plant Diseases/microbiology , Rhizobiaceae , Animals , Female , Male , Symbiosis
SELECTION OF CITATIONS
SEARCH DETAIL