Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Article in English | MEDLINE | ID: mdl-33876762

ABSTRACT

Guanylate-binding proteins (GBPs) form a family of dynamin-related large GTPases which mediate important innate immune functions. They were proposed to form oligomers upon GTP binding/hydrolysis, but the molecular mechanisms remain elusive. Here, we present crystal structures of C-terminally truncated human GBP5 (hGBP51-486), comprising the large GTPase (LG) and middle (MD) domains, in both its nucleotide-free monomeric and nucleotide-bound dimeric states, together with nucleotide-free full-length human GBP2. Upon GTP-loading, hGBP51-486 forms a closed face-to-face dimer. The MD of hGBP5 undergoes a drastic movement relative to its LG domain and forms extensive interactions with the LG domain and MD of the pairing molecule. Disrupting the MD interface (for hGBP5) or mutating the hinge region (for hGBP2/5) impairs their ability to inhibit HIV-1. Our results point to a GTP-induced dimerization mode that is likely conserved among all GBP members and provide insights into the molecular determinants of their antiviral function.


Subject(s)
GTP-Binding Proteins/chemistry , Protein Multimerization , Binding Sites , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , Guanosine Triphosphate/chemistry , Guanosine Triphosphate/metabolism , HEK293 Cells , Humans , Molecular Dynamics Simulation , Protein Binding , env Gene Products, Human Immunodeficiency Virus/chemistry , env Gene Products, Human Immunodeficiency Virus/metabolism
2.
Int J Mol Sci ; 25(15)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39125646

ABSTRACT

Infectivity assays are the key analytical technology for the development and manufacturing of virus-based therapeutics. Here, we introduce a novel assay format that utilizes label-free bright-field images to determine the kinetics of infection-dependent changes in cell morphology. In particular, cell rounding is directly proportional to the amount of infectious virus applied, enabling rapid determination of viral titers in relation to a standard curve. Our kinetic infectious virus titer (KIT) assay is stability-indicating and, due to its sensitive readout method, provides results within 24 h post-infection. Compared to traditional infectivity assays, which depend on a single readout of an infection endpoint, cumulated analysis of kinetic data by a fit model results in precise results (CV < 20%) based on only three wells per sample. This approach allows for a high throughput with ~400 samples processed by a single operator per week. We demonstrate the applicability of the KIT assay for the genetically engineered oncolytic VSV-GP, Newcastle disease virus (NDV), and parapoxvirus ovis (ORFV), but it can potentially be extended to a wide range of viruses that induce morphological changes upon infection. The versatility of this assay, combined with its independence from specific instruments or software, makes it a promising solution to overcome the analytical bottleneck in infectivity assays within the pharmaceutical industry and as a routine method in academic research.


Subject(s)
Viral Load , Kinetics , Humans , Animals , High-Throughput Screening Assays/methods , Newcastle disease virus/physiology , Cell Line
3.
Proc Natl Acad Sci U S A ; 117(13): 7382-7391, 2020 03 31.
Article in English | MEDLINE | ID: mdl-32179688

ABSTRACT

Nef is an accessory protein of primate lentiviruses that is essential for efficient replication and pathogenesis of HIV-1. A conserved feature of Nef proteins from different lentiviral lineages is the ability to modulate host protein trafficking and down-regulate a number of cell surface receptors to enhance replication and promote immune evasion. Notably, the inability of Nef to down-regulate CD3 from infected T cells distinguishes HIV-1 Nef and its direct simian precursors from other primate lentiviruses. Why HIV-1 does not employ this potential immune evasion strategy is not fully understood. Using chimeric HIV-1 constructs expressing lentiviral Nef proteins that differ in their ability to down-modulate CD3, we show that retaining CD3 on the surface of infected primary T cells results in increased viral replication and cell-to-cell spread. We identified increased expression of envelope (Env) trimers at the cell surface and increased Env incorporation into virions as the determinants for the Nef- and CD3-dependent enhancement of viral infectivity. Importantly, this was independent of Nef-mediated antagonism of the host restriction factor SERINC5. CD3 retention on the surface of infected primary T cells also correlated with increased T cell signaling, activation, and cell death during cell-to-cell spread. Taken together, our results show that loss of an otherwise conserved function of Nef has a positive effect on HIV-1 replication, allowing for more efficient replication while potentially contributing to HIV-1 pathogenesis by triggering T cell activation and cell death during viral spread.


Subject(s)
HIV-1/metabolism , HIV-1/pathogenicity , nef Gene Products, Human Immunodeficiency Virus/metabolism , CD3 Complex/metabolism , CD4 Antigens/metabolism , CD4-Positive T-Lymphocytes , Down-Regulation , HIV Seropositivity , HIV-1/genetics , Humans , Immune Evasion , Lymphocyte Activation , Membrane Proteins/metabolism , Primary Cell Culture , Simian Immunodeficiency Virus/pathogenicity , T-Lymphocytes/immunology , Viral Regulatory and Accessory Proteins/metabolism , Virion/metabolism , Virus Replication , env Gene Products, Human Immunodeficiency Virus/immunology , env Gene Products, Human Immunodeficiency Virus/metabolism , nef Gene Products, Human Immunodeficiency Virus/genetics
4.
PLoS Pathog ; 16(8): e1008752, 2020 08.
Article in English | MEDLINE | ID: mdl-32760121

ABSTRACT

Members of the family of pyrin and HIN domain containing (PYHIN) proteins play an emerging role in innate immunity. While absent in melanoma 2 (AIM2) acts a cytosolic sensor of non-self DNA and plays a key role in inflammasome assembly, the γ-interferon-inducible protein 16 (IFI16) restricts retroviral gene expression by sequestering the transcription factor Sp1. Here, we show that the remaining two human PYHIN proteins, i.e. myeloid cell nuclear differentiation antigen (MNDA) and pyrin and HIN domain family member 1 (PYHIN1 or IFIX) share this antiretroviral function of IFI16. On average, knock-down of each of these three nuclear PYHIN proteins increased infectious HIV-1 yield from human macrophages by more than an order of magnitude. Similarly, knock-down of IFI16 strongly increased virus transcription and production in primary CD4+ T cells. The N-terminal pyrin domain (PYD) plus linker region containing a nuclear localization signal (NLS) were generally required and sufficient for Sp1 sequestration and anti-HIV-1 activity of IFI16, MNDA and PYHIN1. Replacement of the linker region of AIM2 by the NLS-containing linker of IFI16 resulted in a predominantly nuclear localization and conferred direct antiviral activity to AIM2 while attenuating its ability to form inflammasomes. The reverse change caused nuclear-to-cytoplasmic relocalization of IFI16 and impaired its antiretroviral activity but did not result in inflammasome assembly. We further show that the Zn-finger domain of Sp1 is critical for the interaction with IFI16 supporting that pyrin domains compete with DNA for Sp1 binding. Finally, we found that human PYHIN proteins also inhibit Hepatitis B virus and simian vacuolating virus 40 as well as the LINE-1 retrotransposon. Altogether, our data show that IFI16, PYHIN1 and MNDA restrict HIV-1 and other viral pathogens by interfering with Sp1-dependent gene expression and support an important role of nuclear PYHIN proteins in innate antiviral immunity.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Cell Nucleus/metabolism , HIV Infections/prevention & control , HIV-1/immunology , Macrophages/immunology , Nuclear Proteins/metabolism , Sp1 Transcription Factor/metabolism , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/virology , Cell Nucleus/genetics , DNA, Viral/genetics , HEK293 Cells , HIV Infections/immunology , HIV Infections/pathology , HIV Infections/virology , HIV-1/genetics , HIV-1/isolation & purification , Hep G2 Cells , Humans , Immunity, Innate/immunology , Inflammasomes/genetics , Inflammasomes/immunology , Macrophages/metabolism , Macrophages/virology , Nuclear Proteins/genetics , Sp1 Transcription Factor/genetics , Virus Replication
5.
Nucleic Acids Res ; 48(19): 10890-10908, 2020 11 04.
Article in English | MEDLINE | ID: mdl-33021676

ABSTRACT

Although endogenous retroviruses (ERVs) are known to harbor cis-regulatory elements, their role in modulating cellular immune responses remains poorly understood. Using an RNA-seq approach, we show that several members of the ERV9 lineage, particularly LTR12C elements, are activated upon HIV-1 infection of primary CD4+ T cells. Intriguingly, HIV-1-induced ERVs harboring transcription start sites are primarily found in the vicinity of immunity genes. For example, HIV-1 infection activates LTR12C elements upstream of the interferon-inducible genes GBP2 and GBP5 that encode for broad-spectrum antiviral factors. Reporter assays demonstrated that these LTR12C elements drive gene expression in primary CD4+ T cells. In line with this, HIV-1 infection triggered the expression of a unique GBP2 transcript variant by activating a cryptic transcription start site within LTR12C. Furthermore, stimulation with HIV-1-induced cytokines increased GBP2 and GBP5 expression in human cells, but not in macaque cells that naturally lack the GBP5 gene and the LTR12C element upstream of GBP2. Finally, our findings suggest that GBP2 and GBP5 have already been active against ancient viral pathogens as they suppress the maturation of the extinct retrovirus HERV-K (HML-2). In summary, our findings uncover how human cells can exploit remnants of once-infectious retroviruses to regulate antiviral gene expression.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Endogenous Retroviruses/genetics , Gene Expression Regulation/immunology , HIV Infections/genetics , Promoter Regions, Genetic , T-Lymphocyte Subsets/immunology , Animals , CD4-Positive T-Lymphocytes/cytology , GTP-Binding Proteins/genetics , GTP-Binding Proteins/immunology , HEK293 Cells , HIV Infections/immunology , HIV-1 , Humans , Macaca mulatta , T-Lymphocyte Subsets/cytology
6.
PLoS Pathog ; 14(8): e1007269, 2018 08.
Article in English | MEDLINE | ID: mdl-30125328

ABSTRACT

SERINC5 is a host restriction factor that impairs infectivity of HIV-1 and other primate lentiviruses and is counteracted by the viral accessory protein Nef. However, the importance of SERINC5 antagonism for viral replication and cytopathicity remained unclear. Here, we show that the Nef protein of the highly divergent SIVcol lineage infecting mantled guerezas (Colobus guereza) is a potent antagonist of SERINC5, although it lacks the CD4, CD3 and CD28 down-modulation activities exerted by other primate lentiviral Nefs. In addition, SIVcol Nefs decrease CXCR4 cell surface expression, suppress TCR-induced actin remodeling, and counteract Colobus but not human tetherin. Unlike HIV-1 Nef proteins, SIVcol Nef induces efficient proteasomal degradation of SERINC5 and counteracts orthologs from highly divergent vertebrate species, such as Xenopus frogs and zebrafish. A single Y86F mutation disrupts SERINC5 and tetherin antagonism but not CXCR4 down-modulation by SIVcol Nef, while mutation of a C-proximal di-leucine motif has the opposite effect. Unexpectedly, the Y86F change in SIVcol Nef had little if any effect on viral replication and CD4+ T cell depletion in preactivated human CD4+ T cells and in ex vivo infected lymphoid tissue. However, SIVcol Nef increased virion infectivity up to 10-fold and moderately increased viral replication in resting peripheral blood mononuclear cells (PBMCs) that were first infected with HIV-1 and activated three or six days later. In conclusion, SIVcol Nef lacks several activities that are conserved in other primate lentiviruses and utilizes a distinct proteasome-dependent mechanism to counteract SERINC5. Our finding that evolutionarily distinct SIVcol Nefs show potent anti-SERINC5 activity supports a relevant role of SERINC5 antagonism for viral fitness in vivo. Our results further suggest this Nef function is particularly important for virion infectivity under conditions of limited CD4+ T cell activation.


Subject(s)
CD4-Positive T-Lymphocytes/virology , Gene Products, nef/physiology , HIV-1/physiology , Lymphoid Tissue/virology , Membrane Proteins/metabolism , Virus Replication/genetics , Animals , CD4-Positive T-Lymphocytes/metabolism , Cells, Cultured , Colobus/virology , HEK293 Cells , Humans , Jurkat Cells , Membrane Proteins/genetics , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Simian Immunodeficiency Virus/genetics
7.
PLoS Pathog ; 13(8): e1006598, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28859166

ABSTRACT

Primate lentiviruses have evolved sophisticated strategies to suppress the immune response of their host species. For example, HIV-2 and most simian immunodeficiency viruses (SIVs) use their accessory protein Nef to prevent T cell activation and antiviral gene expression by downmodulating the T cell receptor CD3. This Nef function was lost in HIV-1 and other vpu-encoding viruses suggesting that the acquisition of Vpu-mediated NF-κB inhibition reduced the selection pressure for inhibition of T cell activation by Nef. To obtain further insights into the modulation of NF-κB activity by primate lentiviral accessory factors, we analyzed 32 Vpr proteins from a large panel of divergent primate lentiviruses. We found that those of SIVcol and SIVolc infecting Colobinae monkeys showed the highest efficacy in suppressing NF-κB activation. Vpr-mediated inhibition of NF-κB resulted in decreased IFNß promoter activity and suppressed type I IFN induction in virally infected primary cells. Interestingly, SIVcol and SIVolc differ from all other primate lentiviruses investigated by the lack of both, a vpu gene and efficient Nef-mediated downmodulation of CD3. Thus, primate lentiviruses have evolved at least three alternative strategies to inhibit NF-κB-dependent immune activation. Functional analyses showed that the inhibitory activity of SIVolc and SIVcol Vprs is independent of DCAF1 and the induction of cell cycle arrest. While both Vprs target the IKK complex or a factor further downstream in the NF-κB signaling cascade, only SIVolc Vpr stabilizes IκBα and inhibits p65 phosphorylation. Notably, only de-novo synthesized but not virion-associated Vpr suppressed the activation of NF-κB, thus enabling NF-κB-dependent initiation of viral gene transcription during early stages of the replication cycle, while minimizing antiviral gene expression at later stages. Our findings highlight the key role of NF-κB in antiviral immunity and demonstrate that primate lentiviruses follow distinct evolutionary paths to modulate NF-κB-dependent expression of viral and antiviral genes.


Subject(s)
HIV Infections/immunology , Immune Evasion/immunology , NF-kappa B/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Animals , Apoptosis/physiology , Blotting, Western , Cell Line , Colobus , Flow Cytometry , HIV/immunology , Humans , Lymphocyte Activation/immunology , Polymerase Chain Reaction , Simian Immunodeficiency Virus/immunology
8.
J Virol ; 91(22)2017 11 15.
Article in English | MEDLINE | ID: mdl-28878085

ABSTRACT

Human cytomegalovirus (HCMV) persistently infects 40% to 100% of the human population worldwide. Experimental and clinical evidence indicates that humoral immunity to HCMV plays an important role in restricting virus dissemination and protecting the infected host from disease. Specific immunoglobulin preparations from pooled plasma of adults selected for high titers of HCMV antibodies have been used for the prevention of CMV disease in transplant recipients and pregnant women. Even though incubation of HCMV particles with these preparations leads to the neutralization of viral infectivity, it is still unclear whether the antibody-treated HCMV particles (referred to here as HCMV-Ab) enter the cells and modulate antiviral immune responses. Here we demonstrate that HCMV-Ab did enter macrophages. HCMV-Ab did not initiate the expression of immediate early antigens (IEAs) in macrophages, but they induced an antiviral state and rendered the cells less susceptible to HCMV infection upon challenge. Resistance to HCMV infection seemed to be due to the activation of intrinsic restriction factors and was independent of interferons. In contrast to actively infected cells, autologous NK cells did not degranulate against HCMV-Ab-treated macrophages, suggesting that these cells may not be eliminated by innate effector cells. Interestingly, HCMV-Ab-treated macrophages stimulated the proliferation of autologous adaptive CD4+ and CD8+ T cells. Our findings not only expand the current knowledge on virus-antibody immunity but may also be relevant for future vaccination strategies.IMPORTANCE Human cytomegalovirus (HCMV), a common herpesvirus, establishes benign but persistent infections in immunocompetent hosts. However, in subjects with an immature or dysfunctional immune system, HCMV is a major cause of morbidity and mortality. Passive immunization has been used in different clinical settings with variable clinical results. Intravenous hyperimmune globulin preparations (IVIg) are obtained from pooled adult human plasma selected for high anti-CMV antibody titers. While HCMV neutralization can be shown in vitro using different systems, data are lacking regarding the cross-influence of IVIg administration on the cellular immune responses. The aim of this study was to evaluate the effects of IVIg on distinct components of the immune response against HCMV, including antigen presentation by macrophages, degranulation of innate natural killer cells, and proliferation of adaptive CD4+ and CD8+ T cells.


Subject(s)
Antibodies, Viral/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cytomegalovirus Infections/immunology , Cytomegalovirus/immunology , Immunity, Cellular , Macrophages/immunology , CD4-Positive T-Lymphocytes/pathology , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/virology , Cytomegalovirus Infections/pathology , Female , Humans , Immunity, Innate , Macrophages/pathology , Macrophages/virology , Male
9.
Retrovirology ; 12: 41, 2015 May 16.
Article in English | MEDLINE | ID: mdl-25980612

ABSTRACT

BACKGROUND: Known antiretroviral restriction factors are encoded by genes that are under positive selection pressure, induced during HIV-1 infection, up-regulated by interferons, and/or interact with viral proteins. To identify potential novel restriction factors, we performed genome-wide scans for human genes sharing molecular and evolutionary signatures of known restriction factors and tested the anti-HIV-1 activity of the most promising candidates. RESULTS: Our analyses identified 30 human genes that share characteristics of known restriction factors. Functional analyses of 27 of these candidates showed that over-expression of a strikingly high proportion of them significantly inhibited HIV-1 without causing cytotoxic effects. Five factors (APOL1, APOL6, CD164, TNFRSF10A, TNFRSF10D) suppressed infectious HIV-1 production in transfected 293T cells by >90% and six additional candidates (FCGR3A, CD3E, OAS1, GBP5, SPN, IFI16) achieved this when the virus was lacking intact accessory vpr, vpu and nef genes. Unexpectedly, over-expression of two factors (IL1A, SP110) significantly increased infectious HIV-1 production. Mechanistic studies suggest that the newly identified potential restriction factors act at different steps of the viral replication cycle, including proviral transcription and production of viral proteins. Finally, we confirmed that mRNA expression of most of these candidate restriction factors in primary CD4+ T cells is significantly increased by type I interferons. CONCLUSIONS: A limited number of human genes share multiple characteristics of genes encoding for known restriction factors. Most of them display anti-retroviral activity in transient transfection assays and are expressed in primary CD4+ T cells.


Subject(s)
HIV-1/immunology , HIV-1/physiology , Host-Pathogen Interactions , Immunity, Innate , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , Cell Line , Gene Expression Profiling , Genetic Testing , Humans
10.
J Virol ; 87(12): 7160-5, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23552418

ABSTRACT

It has been reported that HIV-1 Vpu mediates the degradation of interferon regulatory factor 3 (IRF-3) to avoid innate immune sensing. Here, we show that Vpu does not deplete IRF-3 from transfected cell lines or HIV-1-infected primary cells. Furthermore, the Vpu-dependent suppression of beta interferon expression described in previous studies could be ascribed to inhibition of NF-κB activation. Thus, Vpu suppresses innate immune activation through inhibition of NF-κB rather than degradation of IRF-3.


Subject(s)
HIV-1/pathogenicity , Human Immunodeficiency Virus Proteins/metabolism , Interferon Regulatory Factor-3/metabolism , NF-kappa B/antagonists & inhibitors , Viral Regulatory and Accessory Proteins/metabolism , HIV-1/genetics , HIV-1/metabolism , HeLa Cells , Human Immunodeficiency Virus Proteins/genetics , Humans , Immunity, Innate/drug effects , Interferon Regulatory Factor-3/genetics , T-Lymphocytes/metabolism , T-Lymphocytes/virology , Transfection , Viral Regulatory and Accessory Proteins/genetics
11.
Retrovirology ; 10: 85, 2013 Aug 10.
Article in English | MEDLINE | ID: mdl-23937976

ABSTRACT

BACKGROUND: Tetherin (or BST-2) is an antiviral host restriction factor that suppresses the release of HIV-1 and other enveloped viruses by tethering them to the cell surface. Recently, it has been demonstrated that tetherin also acts as an innate sensor of HIV-1 assembly that induces NF-κB-dependent proinflammatory responses. Furthermore, it has been reported that polymorphisms in the promoter and 3' untranslated region of the bst2 gene may affect the clinical outcome of HIV-1 infection. However, non-synonymous polymorphisms in the bst2 open reading frame have not yet been described or functionally characterized. RESULTS: Mining of the Exome Variant Server database identified seven very rare naturally occurring missense variants of tetherin (Y8H, R19H, N49S, D103N, E117A, D129E and V146L) in human populations. Functional analyses showed that none of these sequence variants significantly affects the ability of tetherin to inhibit HIV-1 virion release or its sensitivity to antagonism by HIV-1 Vpu or SIVtan Env, although Y8H alters a potential YxY endocytic motif proposed to play a role in virion uptake. Thus, these variants do most likely not represent an evolutionary advantage in directly controlling HIV-1 replication or spread. Interestingly, however, the R19H variant selectively abrogated the signaling activity of tetherin. CONCLUSIONS: Restriction of HIV-1 virion release and immune sensing are two separable functions of human tetherin and the latter activity is severely impaired by a single amino acid variant (R19H) in the cytoplasmic part of tetherin.


Subject(s)
Antigens, CD/genetics , Antigens, CD/metabolism , HIV-1/physiology , Mutation, Missense , Signal Transduction , Virus Release , Antigens, CD/immunology , GPI-Linked Proteins/genetics , GPI-Linked Proteins/immunology , GPI-Linked Proteins/metabolism , HIV-1/immunology , Humans , Mutant Proteins/genetics , Mutant Proteins/immunology , Mutant Proteins/metabolism
12.
J Virol Methods ; 299: 114318, 2022 01.
Article in English | MEDLINE | ID: mdl-34626683

ABSTRACT

A robust and precise infectivity assay is a prerequisite for the development and market supply of virus-based biologics. Like other cell-based assays, traditional infectivity assays suffer from high variability and require extensive hands-on time. Therefore, a faster and more robust method to measure infectivity is needed to fulfill the requirements of a higher sample throughput and speed in drug development. We developed a label-free tissue culture infectious dose 50 (TCID50) assay using automated image analysis that determines the cell confluence to discriminate between cytopathic effect-positive and -negative wells. In addition, we implemented semi-automated bench-top pipetting robots for the required pipetting steps to further shorten the hands-on time of the assay. The automated image analysis categorized >99 % of the wells similar as operators did via visual evaluation and there was a close correlation between the titers that were determined by using either the automated image analysis or visual evaluation (r² = 0.99). Thus, here we present a label-free TCID50 method with a stable automated image analysis that is ∼3.6x faster and more standardized compared to the classical TCID50 assay.


Subject(s)
Viruses , Cytopathogenic Effect, Viral , DNA Viruses
13.
mBio ; 11(1)2020 01 14.
Article in English | MEDLINE | ID: mdl-31937644

ABSTRACT

CpG dinucleotide suppression has been reported to allow HIV-1 to evade inhibition by the zinc-finger antiviral protein (ZAP). Here, we show that primate lentiviruses display marked differences in CpG frequencies across their genome, ranging from 0.44% in simian immunodeficiency virus SIVwrc from Western red colobus to 2.3% in SIVmon infecting mona monkeys. Moreover, functional analyses of a large panel of human and simian immunodeficiency viruses revealed that the magnitude of CpG suppression does not correlate with their susceptibility to ZAP. However, we found that the number of CpG dinucleotides within a region of ∼700 bases at the 5' end of the env gene determines ZAP sensitivity of primary HIV-1 strains but not of HIV-2. Increased numbers of CpGs in this region were associated with reduced env mRNA expression and viral protein production. ZAP sensitivity profiles of chimeric simian-human immunodeficiency viruses (SHIVs) expressing different HIV-1 env genes were highly similar to those of the corresponding HIV-1 strains. The frequency of CpGs in the identified env region correlated with differences in clinical progression rates. Thus, the CpG frequency in a specific part of env, rather than the overall genomic CpG content, governs the susceptibility of HIV-1 to ZAP and might affect viral pathogenicity in vivoIMPORTANCE Evasion of the zinc-finger antiviral protein (ZAP) may drive CpG dinucleotide suppression in HIV-1 and many other viral pathogens but the viral determinants of ZAP sensitivity are poorly defined. Here, we examined CpG suppression and ZAP sensitivity in a large number of primate lentiviruses and demonstrate that their genomic frequency of CpGs varies substantially and does not correlate with ZAP sensitivity. We further show that the number of CpG residues in a defined region at the 5' end of the env gene together with structural features plays a key role in HIV-1 susceptibility to ZAP and correlates with differences in clinical progression rates in HIV-1-infected individuals. Our identification of a specific part of env as a major determinant of HIV-1 susceptibility to ZAP restriction provides a basis for future studies of the underlying inhibitory mechanisms and their potential relevance in the pathogenesis of AIDS.


Subject(s)
CpG Islands , HIV-1/genetics , RNA-Binding Proteins/genetics , env Gene Products, Human Immunodeficiency Virus/genetics , Genome, Viral , HEK293 Cells , HIV-1/pathogenicity , HIV-2/genetics , Humans , Simian Immunodeficiency Virus/genetics , Virus Replication
14.
Nat Microbiol ; 5(10): 1247-1261, 2020 10.
Article in English | MEDLINE | ID: mdl-32690953

ABSTRACT

To avoid innate sensing and immune control, human immunodeficiency virus type 1 (HIV-1) has to prevent the accumulation of viral complementary DNA species. Here, we show that the late HIV-1 accessory protein Vpu hijacks DNA repair mechanisms to promote degradation of nuclear viral cDNA in cells that are already productively infected. Vpu achieves this by interacting with RanBP2-RanGAP1*SUMO1-Ubc9 SUMO E3-ligase complexes at the nuclear pore to reprogramme promyelocytic leukaemia protein nuclear bodies and reduce SUMOylation of Bloom syndrome protein, unleashing end degradation of viral cDNA. Concomitantly, Vpu inhibits RAD52-mediated homologous repair of viral cDNA, preventing the generation of dead-end circular forms of single copies of the long terminal repeat and permitting sustained nucleolytic attack. Our results identify Vpu as a key modulator of the DNA repair machinery. We show that Bloom syndrome protein eliminates nuclear HIV-1 cDNA and thereby suppresses immune sensing and proviral hyper-integration. Therapeutic targeting of DNA repair may facilitate the induction of antiviral immunity and suppress proviral integration replenishing latent HIV reservoirs.


Subject(s)
DNA Repair , HIV Infections/virology , HIV-1/physiology , Host-Pathogen Interactions , Human Immunodeficiency Virus Proteins/metabolism , Immunity, Innate , Viral Regulatory and Accessory Proteins/metabolism , Virus Integration , Gene Expression Regulation, Viral , HIV Infections/genetics , HIV Infections/immunology , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Models, Biological , Rad52 DNA Repair and Recombination Protein/metabolism , Recombinational DNA Repair , Sumoylation
15.
Nat Microbiol ; 4(9): 1532-1544, 2019 09.
Article in English | MEDLINE | ID: mdl-31133753

ABSTRACT

RNA-modulating factors not only regulate multiple steps of cellular RNA metabolism, but also emerge as key effectors of the immune response against invading viral pathogens including human immunodeficiency virus type-1 (HIV-1). However, the cellular RNA-binding proteins involved in the establishment and maintenance of latent HIV-1 reservoirs have not been extensively studied. Here, we screened a panel of 62 cellular RNA-binding proteins and identified NEDD4-binding protein 1 (N4BP1) as a potent interferon-inducible inhibitor of HIV-1 in primary T cells and macrophages. N4BP1 harbours a prototypical PilT N terminus-like RNase domain and inhibits HIV-1 replication by interacting with and degrading viral mRNA species. Following activation of CD4+ T cells, however, N4BP1 undergoes rapid cleavage at Arg 509 by the paracaspase named mucosa-associated lymphoid tissue lymphoma translocation 1 (MALT1). Mutational analyses and knockout studies revealed that MALT1-mediated inactivation of N4BP1 facilitates the reactivation of latent HIV-1 proviruses. Taken together, our findings demonstrate that the RNase N4BP1 is an efficient restriction factor of HIV-1 and suggest that inactivation of N4BP1 by induction of MALT1 activation might facilitate elimination of latent HIV-1 reservoirs.


Subject(s)
HIV Infections/virology , HIV-1/physiology , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/metabolism , Nuclear Proteins/metabolism , RNA-Binding Proteins/metabolism , Virus Activation/genetics , Animals , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/virology , Cell Line , Gene Expression/drug effects , HIV Infections/metabolism , Humans , Interferon-alpha/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Macrophages/virology , Mice , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/genetics , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Protein Domains , RNA, Messenger/metabolism , RNA, Viral/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , Receptors, Antigen, T-Cell/metabolism , Virus Latency
16.
Elife ; 82019 02 05.
Article in English | MEDLINE | ID: mdl-30717826

ABSTRACT

Many viral pathogens target innate sensing cascades and/or cellular transcription factors to suppress antiviral immune responses. Here, we show that the accessory viral protein U (Vpu) of HIV-1 exerts broad immunosuppressive effects by inhibiting activation of the transcription factor NF-κB. Global transcriptional profiling of infected CD4 +T cells revealed that vpu-deficient HIV-1 strains induce substantially stronger immune responses than the respective wild type viruses. Gene set enrichment analyses and cytokine arrays showed that Vpu suppresses the expression of NF-κB targets including interferons and restriction factors. Mutational analyses demonstrated that this immunosuppressive activity of Vpu is independent of its ability to counteract the restriction factor and innate sensor tetherin. However, Vpu-mediated inhibition of immune activation required an arginine residue in the cytoplasmic domain that is critical for blocking NF-κB signaling downstream of tetherin. In summary, our findings demonstrate that HIV-1 Vpu potently suppresses NF-κB-elicited antiviral immune responses at the transcriptional level.


Subject(s)
HIV-1/growth & development , HIV-1/immunology , Host-Pathogen Interactions , Human Immunodeficiency Virus Proteins/metabolism , Immune Evasion , Immunity, Innate , NF-kappa B/antagonists & inhibitors , Viral Regulatory and Accessory Proteins/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , Cells, Cultured , Down-Regulation , Humans , Transcription, Genetic
17.
Cell Host Microbe ; 25(6): 858-872.e13, 2019 06 12.
Article in English | MEDLINE | ID: mdl-31175045

ABSTRACT

The interferon γ-inducible protein 16 (IFI16) is known as immune sensor of retroviral DNA intermediates. We show that IFI16 restricts HIV-1 independently of immune sensing by binding and inhibiting the host transcription factor Sp1 that drives viral gene expression. This antiretroviral activity and ability to bind Sp1 require the N-terminal pyrin domain and nuclear localization of IFI16, but not the HIN domains involved in DNA binding. Highly prevalent clade C HIV-1 strains are more resistant to IFI16 and less dependent on Sp1 than other HIV-1 subtypes. Furthermore, inhibition of Sp1 by IFI16 or pharmacologically by Mithramycin A suppresses reactivation of latent HIV-1 in CD4+ T cells. Finally, IFI16 also inhibits retrotransposition of LINE-1, known to engage Sp1, and murine IFI16 homologs restrict Friend retrovirus replication in mice. Thus, IFI16 restricts retroviruses and retrotransposons by interfering with Sp1-dependent gene expression, and evasion from this restriction may facilitate spread of HIV-1 subtype C.


Subject(s)
HIV-1/immunology , Immunologic Factors/metabolism , Nuclear Proteins/metabolism , Phosphoproteins/metabolism , Sp1 Transcription Factor/antagonists & inhibitors , Transcription, Genetic , Virus Activation , Virus Latency , Animals , CD4-Positive T-Lymphocytes/virology , Cells, Cultured , Genotype , HIV-1/classification , HIV-1/genetics , HIV-1/growth & development , Mice
18.
Cell Rep ; 27(7): 2092-2104.e10, 2019 05 14.
Article in English | MEDLINE | ID: mdl-31091448

ABSTRACT

Guanylate-binding protein (GBP) 5 is an interferon (IFN)-inducible cellular factor reducing HIV-1 infectivity by an incompletely understood mechanism. Here, we show that this activity is shared by GBP2, but not by other members of the human GBP family. GBP2/5 decrease the activity of the cellular proprotein convertase furin, which mediates conversion of the HIV-1 envelope protein (Env) precursor gp160 into mature gp120 and gp41. Because this process primes HIV-1 Env for membrane fusion, viral particles produced in the presence of GBP2/5 are poorly infectious due to increased incorporation of non-functional gp160. Furin activity is critical for the processing of envelope glycoproteins of many viral pathogens. Consistently, GBP2/5 also inhibit Zika, measles, and influenza A virus replication and decrease infectivity of viral particles carrying glycoproteins of Marburg and murine leukemia viruses. Collectively, our results show that GPB2/5 exert broad antiviral activity by suppressing the activity of the virus-dependency factor furin.


Subject(s)
Furin/metabolism , GTP-Binding Proteins/metabolism , HIV Envelope Protein gp120/metabolism , HIV Envelope Protein gp41/metabolism , HIV-1/metabolism , Furin/genetics , GTP-Binding Proteins/genetics , HEK293 Cells , HIV Envelope Protein gp120/genetics , HIV Envelope Protein gp41/genetics , HIV-1/genetics , Humans , Influenza A virus/genetics , Influenza A virus/metabolism , Measles virus/genetics , Measles virus/metabolism , Zika Virus/genetics , Zika Virus/metabolism
19.
J Leukoc Biol ; 103(3): 465-477, 2018 03.
Article in English | MEDLINE | ID: mdl-29345347

ABSTRACT

Antiviral restriction factors are structurally and functionally diverse cellular proteins that play a key role in the first line of defense against viral pathogens. Although many cell types constitutively express restriction factors at low levels, their induction in response to viral exposure and replication is often required for potent control and repulse of the invading pathogens. It is well established that type I IFNs efficiently induce antiviral restriction factors. Accumulating evidence suggests that other types of IFN, as well as specific cytokines, such as IL-27, and other activators of the cell are also capable of enhancing the expression of restriction factors and hence to establish an antiviral cellular state. Agents that efficiently induce restriction factors, increase their activity, and/or render them resistant against viral antagonists without causing general inflammation and significant side effects hold some promise for novel therapeutic or preventive strategies. In the present review, we summarize some of the current knowledge on the induction of antiretroviral restriction factors and perspectives for therapeutic application.


Subject(s)
Antiviral Agents/pharmacology , Immunity, Innate/immunology , Interferons/pharmacology , Virus Diseases/drug therapy , Animals , Humans , Immunity, Innate/drug effects , Signal Transduction , Virus Diseases/immunology , Virus Diseases/virology , Virus Replication
20.
Front Immunol ; 9: 2978, 2018.
Article in English | MEDLINE | ID: mdl-30619335

ABSTRACT

Viruses and hosts are situated in a molecular arms race. To avoid morbidity and mortality, hosts evolved antiviral restriction factors. These restriction factors exert selection pressure on the viruses and drive viral evolution toward increasingly efficient immune antagonists. Numerous viruses exploit cellular DNA damage-binding protein 1 (DDB1)-containing Cullin RocA ubiquitin ligases (CRLs) to induce the ubiquitination and subsequent proteasomal degradation of antiviral factors expressed by their hosts. To establish a comprehensive understanding of the underlying protein interaction networks, we performed immuno-affinity precipitations for a panel of DDB1-interacting proteins derived from viruses such as mouse cytomegalovirus (MCMV, Murid herpesvirus [MuHV] 1), rat cytomegalovirus Maastricht MuHV2, rat cytomegalovirus English MuHV8, human cytomegalovirus (HCMV), hepatitis B virus (HBV), and human immunodeficiency virus (HIV). Cellular interaction partners were identified and quantified by mass spectrometry (MS) and validated by classical biochemistry. The comparative approach enabled us to separate unspecific interactions from specific binding partners and revealed remarkable differences in the strength of interaction with DDB1. Our analysis confirmed several previously described interactions like the interaction of the MCMV-encoded interferon antagonist pM27 with STAT2. We extended known interactions to paralogous proteins like the interaction of the HBV-encoded HBx with different Spindlin proteins and documented interactions for the first time, which explain functional data like the interaction of the HIV-2-encoded Vpr with Bax. Additionally, several novel interactions were identified, such as the association of the HIV-2-encoded Vpx with the transcription factor RelA (also called p65). For the latter interaction, we documented a functional relevance in antagonizing NF-κB-driven gene expression. The mutation of the DDB1 binding interface of Vpx significantly impaired NF-κB inhibition, indicating that Vpx counteracts NF-κB signaling by a DDB1- and CRL-dependent mechanism. In summary, our findings improve the understanding of how viral pathogens hijack cellular DDB1 and CRLs to ensure efficient replication despite the expression of host restriction factors.


Subject(s)
HIV-2/immunology , Protein Binding/immunology , Transcription Factor RelA/genetics , Viral Regulatory and Accessory Proteins/metabolism , Virus Diseases/immunology , Animals , Cytomegalovirus/immunology , DNA-Binding Proteins/immunology , DNA-Binding Proteins/metabolism , Fibroblasts , Gene Expression Regulation/immunology , HEK293 Cells , HIV-2/genetics , HIV-2/metabolism , Hepatitis B virus/immunology , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Immunoprecipitation/methods , Mass Spectrometry/methods , Mice , Muromegalovirus/immunology , NIH 3T3 Cells , Primary Cell Culture , Protein Interaction Mapping/methods , Transcription Factor RelA/immunology , Transcription Factor RelA/metabolism , Ubiquitin-Protein Ligases/immunology , Ubiquitin-Protein Ligases/metabolism , Viral Regulatory and Accessory Proteins/genetics , Viral Regulatory and Accessory Proteins/immunology , Virus Diseases/virology
SELECTION OF CITATIONS
SEARCH DETAIL