ABSTRACT
Without any realistic prospect of comprehensive global vaccine coverage and lasting immunity, control of pandemics such as COVID-19 will require implementation of large-scale, rapid identification and isolation of infectious individuals to limit further transmission. Here, we describe an automated, high-throughput integrated screening platform, incorporating saliva-based loop-mediated isothermal amplification (LAMP) technology, that is designed for population-scale sensitive detection of infectious carriers of SARS-CoV-2 RNA. Central to this surveillance system is the "Sentinel" testing instrument, which is capable of reporting results within 25 min of saliva sample collection with a throughput of up to 3840 results per hour. It incorporates continuous flow loading of samples at random intervals to cost-effectively adjust for fluctuations in testing demand. Independent validation of our saliva-based RT-LAMP technology on an automated LAMP instrument coined the "Sentinel", found 98.7% sensitivity, 97.6% specificity, and 98% accuracy against a RT-PCR comparator assay, confirming its suitability for surveillance screening. This Sentinel surveillance system offers a feasible and scalable approach to complement vaccination, to curb the spread of COVID-19 variants, and control future pandemics to save lives.
Subject(s)
COVID-19 , Saliva , COVID-19/diagnosis , COVID-19/epidemiology , Humans , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Pandemics , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/genetics , Saliva/chemistry , Sensitivity and SpecificityABSTRACT
Cancer incidence appears to be higher amongst firefighters compared to the general population. Given that many cancers have an environmental component, their occupational exposure to products of carbon combustion such as polycyclic aromatic hydrocarbons (PAHs) is of concern. This is the first UK study identifying firefighters exposure to PAH carcinogens. Wipe samples were collected from skin (jaw, neck, hands), personal protective equipment of firefighters, and work environment (offices, fire stations and engines) in two UK Fire and Rescue Service Stations. Levels of 16 US Environmental Protection Agency (EPA) PAHs were quantified together with more potent carcinogens: 7,12-dimethylbenzo[a]anthracene, and 3-methylcholanthrene (3-MCA) (12 months post-initial testing). Cancer slope factors, used to estimate cancer risk, indicate a markedly elevated risk. PAH carcinogens including benzo[a]pyrene (B[a]P), 3-MCA, and 7,12-dimethylbenz[a]anthracene PAHs were determined on body surfaces (e.g., hands, throat), on PPE including helmets and clothing, and on work surfaces. The main exposure route would appear to be via skin absorption. These results suggest an urgent need to monitor exposures to firefighters in their occupational setting and conduct long-term follow-up regarding their health status.