Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Int J Mol Sci ; 24(11)2023 May 26.
Article in English | MEDLINE | ID: mdl-37298250

ABSTRACT

D3 receptors, a key component of the dopamine system, have emerged as a potential target of therapies to improve motor symptoms across neurodegenerative and neuropsychiatric conditions. In the present work, we evaluated the effect of D3 receptor activation on the involuntary head twitches induced by 2,5-dimethoxy-4-iodoamphetamine (DOI) at behavioral and electrophysiological levels. Mice received an intraperitoneal injection of either a full D3 agonist, WC 44 [4-(2-fluoroethyl)-N-[4-[4-(2-methoxyphenyl)piperazin 1-yl]butyl]benzamide] or a partial D3 agonist, WW-III-55 [N-(4-(4-(4-methoxyphenyl)piperazin-1-yl)butyl)-4-(thiophen-3-yl)benzamide] five minutes before the intraperitoneal administration of DOI. Compared to the control group, both D3 agonists delayed the onset of the DOI-induced head-twitch response and reduced the total number and frequency of the head twitches. Moreover, the simultaneous recording of neuronal activity in the motor cortex (M1) and dorsal striatum (DS) indicated that D3 activation led to slight changes in a single unit activity, mainly in DS, and increased its correlated firing in DS or between presumed cortical pyramidal neurons (CPNs) and striatal medium spiny neurons (MSNs). Our results confirm the role of D3 receptor activation in controlling DOI-induced involuntary movements and suggest that this effect involves, at least in part, an increase in correlated corticostriatal activity. A further understanding of the underlying mechanisms may provide a suitable target for treating neuropathologies in which involuntary movements occur.


Subject(s)
Dyskinesias , Receptors, Dopamine D3 , Mice , Animals , Receptors, Dopamine D2/agonists , Benzamides/pharmacology , Receptors, Dopamine D1
2.
Hippocampus ; 32(3): 153-178, 2022 03.
Article in English | MEDLINE | ID: mdl-34918836

ABSTRACT

Single units were recorded in hippocampus, lateral septum (LS), and dorsomedial striatum (DMS) while freely behaving rats (n = 3) ran trials in a T-maze task and rested in a holding bucket between trials. In LS, 28% (64/226) of recorded neurons were excited and 14% (31/226) were inhibited during sharp wave ripples (SWRs). LS neurons that were excited during SWRs fired preferentially on the downslope of hippocampal theta rhythm and had firing rates that were positively correlated with running speed; LS neurons that were inhibited during SWRs fired preferentially on the upslope of hippocampal theta rhythm and had firing rates that were negatively correlated with running speed. In DMS, only 3.3% (12/366) of recorded neurons were excited and 5.7% (21/366) were inhibited during SWRs. As in LS, DMS neurons that were excited by SWRs tended to have firing rates that were positively modulated by running speed, whereas DMS neurons that were inhibited by SWRs tended to have firing rates that were negatively modulated by running speed. But in contrast with LS, these two DMS subpopulations did not clearly segregate their spikes to different phases of the theta cycle. Based on these results and a review of prior findings, we discuss how concurrent activation of spatial trajectories in hippocampus and motor representations in LS and DMS may contribute to neural computations that support reinforcement learning and value-based decision making.


Subject(s)
Running , Theta Rhythm , Action Potentials/physiology , Animals , Corpus Striatum , Hippocampus/physiology , Neurons/physiology , Rats , Theta Rhythm/physiology
3.
J Neurophysiol ; 122(6): 2621-2629, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31693428

ABSTRACT

Abnormal communication between cerebral cortex and striatum plays a major role in the motor symptoms of Huntington's disease (HD), a neurodegenerative disorder caused by a mutation of the huntingtin gene (mHTT). Because cortex is the main driver of striatal processing, we recorded local field potential (LFP) activity simultaneously in primary motor cortex (M1) and dorsal striatum (DS) in BACHD mice, a full-length HD gene model, and in a conditional BACHD/Emx-1 Cre (BE) model in which mHTT is suppressed in cortical efferents, while mice freely explored a plus-shaped maze beginning at 20 wk of age. Relative to wild-type (WT) controls, BACHD mice were just as active across >40 wk of testing but became progressively less likely to turn into a perpendicular arm as they approached the choice point of the maze, a sign of HD motor inflexibility. BE mice, in contrast, turned as freely as WT throughout testing. Although BE mice did not exactly match WT in LFP activity, the reduction in alpha (8-13 Hz), beta (13-30 Hz), and low-gamma (30-50 Hz) power that occurred in M1 of turning-impaired BACHD mice was reversed. No reversal occurred in DS. In fact, BE mice showed further reductions in DS theta (4-8 Hz), beta, and low-gamma power relative to the BACHD model. Coherence analysis indicated a dysregulation of corticostriatal information flow in both BACHD and BE mice. Collectively, our results suggest that mHTT in cortical outputs drives the dysregulation of select cortical frequencies that accompany the loss of behavioral flexibility in HD.NEW & NOTEWORTHY BACHD mice, a full-length genetic model of Huntington's disease (HD), express aberrant local field potential (LFP) activity in primary motor cortex (M1) along with decreased probability of turning into a perpendicular arm of a plus-shaped maze, a motor inflexibility phenotype. Suppression of the mutant huntingtin gene in cortical output neurons prevents decline in turning and improves alpha, beta, and low-gamma activity in M1. Our results implicate cortical networks in the search for therapeutic strategies to alleviate HD motor signs.


Subject(s)
Behavior, Animal/physiology , Brain Waves/physiology , Huntingtin Protein/deficiency , Huntington Disease/physiopathology , Maze Learning/physiology , Motor Cortex/physiopathology , Neostriatum/physiopathology , Nerve Net/physiopathology , Animals , Disease Models, Animal , Female , Male , Mice , Mice, Transgenic
4.
Front Cell Neurosci ; 16: 1037641, 2022.
Article in English | MEDLINE | ID: mdl-36744061

ABSTRACT

Research on glutamatergic neurotransmission has focused mainly on the function of presynaptic and postsynaptic neurons, leaving astrocytes with a secondary role only to ensure successful neurotransmission. However, recent evidence indicates that astrocytes contribute actively and even regulate neuronal transmission at different levels. This review establishes a framework by comparing glutamatergic components between neurons and astrocytes to examine how astrocytes modulate or otherwise influence neuronal transmission. We have included the most recent findings about the role of astrocytes in neurotransmission, allowing us to understand the complex network of neuron-astrocyte interactions. However, despite the knowledge of synaptic modulation by astrocytes, their contribution to specific physiological and pathological conditions remains to be elucidated. A full understanding of the astrocyte's role in neuronal processing could open fruitful new frontiers in the development of therapeutic applications.

5.
Org Biomol Chem ; 7(17): 3572-5, 2009 Sep 07.
Article in English | MEDLINE | ID: mdl-19675914

ABSTRACT

The effect on the rate of reaction of each of a series of Menschutkin processes on changing from a molecular solvent to an ionic liquid was investigated. In each case, the rate acceleration observed at room temperature could be attributed to the change in the entropy of the system on reaching the transition state, offsetting any enthalpic cost.

6.
Magn Reson Chem ; 47(4): 342-7, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19189283

ABSTRACT

(79)Br NMR spectroscopy has been used to monitor a series of reactions in which the bromide ion is produced, including the Menschutkin reaction of pyridine with a range of substituted benzyl bromides and a Heck coupling process. In cases where the process could also be monitored using (1)H NMR spectroscopy, the kinetic analyses using heteronuclear magnetic resonance spectroscopy were shown to be completely consistent. Both the utility of the process in following reactions which may be difficult to analyse using other techniques and the practical limitations associated with solvent choice are discussed.


Subject(s)
Benzyl Compounds/chemistry , Bromine/chemistry , Magnetic Resonance Spectroscopy/methods , Benzyl Compounds/chemical synthesis , Kinetics , Pyridines/chemistry , Time Factors
7.
Bioorg Med Chem Lett ; 17(23): 6651-5, 2007 Dec 01.
Article in English | MEDLINE | ID: mdl-17923406

ABSTRACT

A new small molecule inhibitor of bacterial cell division has been discovered using a high-throughput screen in Escherichia coli. Although the lead screening hit (534F6) exhibited modest inhibition of the GTPase activity of FtsZ (20+/-5% at 100microM of compound), a primary target for bacterial cell division inhibitors, several analogs caused potent bacterial growth inhibition with negligible antagonism of FtsZ GTPase activity. A library of analogs has been prepared and several alkyne-tagged photoaffinity probes have been synthesized for use in experiments to elucidate the primary target of this compound.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Cell Division/drug effects , Escherichia coli/drug effects , Growth Inhibitors/chemical synthesis , Pyrrolidines/chemical synthesis , Sulfonamides/chemical synthesis , Anti-Bacterial Agents/pharmacology , Cell Division/physiology , Escherichia coli/cytology , Escherichia coli/physiology , Escherichia coli Proteins/antagonists & inhibitors , Escherichia coli Proteins/physiology , Growth Inhibitors/pharmacology , Microbial Sensitivity Tests , Pyrrolidines/pharmacology , Sulfonamides/pharmacology
8.
J Abnorm Psychol ; 122(3): 917-27, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23647123

ABSTRACT

Systematic efforts are underway to address major flaws in the current diagnostic taxonomy of mental disorders, fostering hope that a new nosology might be based on brain biology. The National Institute of Mental Health Research Domains Criteria (RDoC) initiative aims to redefine mental illness leveraging information that spans molecular to behavioral levels of analysis. Major effort is still needed to forge multilevel conceptual and measurement models capable of representing knowledge within and across these levels. The development of such models may help refine and share complex hypotheses, and reduce the risk of replacing the current taxonomy with dimensions and/or categories that manifest little incremental biological validity. To create useful models we need to define concepts, relations among concepts, and links to supporting evidence. Some methods already enable representation of concepts and measures at the levels of behavioral and basic biological processes, but a major gap at the level of neural circuitry must be bridged to link basic biological and behavioral levels. We provide a schematic framework, using as an example the representation of selected "working memory" concepts and evidence across multiple levels of analysis as these have been described in the RDoC Workshops. This example illustrates multiple challenges and some possible solutions that may help clarify the aims of individual research projects and enable integration of diverse efforts on RDoC and related initiatives.


Subject(s)
Mental Disorders/classification , Models, Neurological , Models, Psychological , Humans , Memory/physiology , Mental Disorders/physiopathology
9.
Cogn Neurodyn ; 1(2): 143-55, 2007 Jun.
Article in English | MEDLINE | ID: mdl-19003508

ABSTRACT

The hippocampus is needed for at least one kind of trace classical conditioning, the air-puff eye-blink paradigm. A simple model of region CA3 predicts three basic, quantitative observations of the learning behavior of rabbits. One particular quantified prediction is the learnable trace interval. The boundary region of the reliably learnable trace interval represents a phase transition. Within this transition, three behaviorally distinguishable modes are expressed: failure to blink; blink too soon; and occasionally, appropriate predictive blinking. In the region of the phase transition, there is a small sub-interval where the behavioral modes fluctuate rapidly from trial to trial for individual simulations. Such observed fluctuations are an experimental prediction by the model. The discussion also includes a brief conjecture concerning the underlying cause of the phase transition and the fluctuations.

SELECTION OF CITATIONS
SEARCH DETAIL