Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
J Med Entomol ; 54(5): 1360-1364, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28874016

ABSTRACT

The recently recognized Lyme disease spirochete, Borrelia mayonii, has been detected in host-seeking Ixodes scapularis Say ticks and is associated with human disease in the Upper Midwest. Although experimentally shown to be vector competent, studies have been lacking to determine the duration of time from attachment of a single B. mayonii-infected I. scapularis nymph to transmission of spirochetes to a host. If B. mayonii spirochetes were found to be transmitted within the first 24 h after tick attachment, in contrast to Borrelia burgdorferi spirochetes (>24 h), then current recommendations for tick checks and prompt tick removal as a way to prevent transmission of Lyme disease spirochetes would need to be amended. We therefore conducted a study to determine the probability of transmission of B. mayonii spirochetes from single infected nymphal I. scapularis ticks to susceptible experimental mouse hosts at three time points postattachment (24, 48, and 72 h) and for a complete feed (>72-96 h). No evidence of infection with or exposure to B. mayonii occurred in mice that were fed upon by a single infected nymph for 24 or 48 h. The probability of transmission by a single infected nymphal tick was 31% after 72 h of attachment and 57% for a complete feed. In addition, due to unintended simultaneous feeding upon some mice by two B. mayonii-infected nymphs, we recorded a single occasion in which feeding for 48 h by two infected nymphs resulted in transmission and viable infection in the mouse. We conclude that the duration of attachment of a single infected nymphal I. scapularis tick required for transmission of B. mayonii appears to be similar to that for B. burgdorferi: transmission is minimal for the first 24 h of attachment, rare up to 48 h, but then increases distinctly by 72 h postattachment.


Subject(s)
Arachnid Vectors/microbiology , Borrelia/physiology , Ixodes/microbiology , Lyme Disease/transmission , Animals , Arachnid Vectors/growth & development , Female , Ixodes/growth & development , Lyme Disease/microbiology , Mice , Nymph/growth & development , Nymph/microbiology , Probability , Time Factors
2.
J Med Entomol ; 54(1): 239-242, 2017 01.
Article in English | MEDLINE | ID: mdl-28082653

ABSTRACT

Borrelia mayonii, a recently recognized species within the Borrelia burgdorferi sensu lato complex, has been detected in host-seeking Ixodes scapularis Say ticks and found to be associated with Lyme disease in the Upper Midwest. This spirochete has, to date, not been documented from the Northeast, but we previously demonstrated that I. scapularis ticks originating from Connecticut are capable of serving as a vector of B. mayonii In this follow-up study, we compared the vector efficiency for B. mayonii (strain MN14-1420) of I. scapularis ticks originating from Minnesota in the Upper Midwest and Connecticut in the Northeast. CD-1 outbred white mice previously infected with B. mayonii via tick bite were exposed to simultaneous feeding by Minnesota and Connecticut larvae contained within separate feeding capsules. We found no difference in the ability of Minnesota and Connecticut larvae to acquire B. mayonii from infected mice and pass spirochetes to the nymphal stage (overall nymphal infection rates of 11.6 and 13.3%, respectively). Moreover, the efficiency of transmission of B. mayonii by single infected nymphs was similar for the Minnesota and Connecticut ticks (33 and 44%, respectively). We conclude that the examined I. scapularis ticks from the Upper Midwest and Northeast did not differ in their efficiency as vectors for B. mayonii.


Subject(s)
Arachnid Vectors/microbiology , Borrelia burgdorferi Group/physiology , Ixodes/microbiology , Lyme Disease/transmission , Animals , Arachnid Vectors/growth & development , Connecticut , Ixodes/growth & development , Larva/growth & development , Larva/microbiology , Lyme Disease/microbiology , Mice , Minnesota , Nymph/growth & development , Nymph/microbiology
3.
Sci Rep ; 7: 44394, 2017 03 13.
Article in English | MEDLINE | ID: mdl-28287618

ABSTRACT

The causal agents of Lyme disease in North America, Borrelia burgdorferi and Borrelia mayonii, are transmitted primarily by Ixodes scapularis ticks. Due to their limited metabolic capacity, spirochetes rely on the tick blood meal for nutrients and metabolic intermediates while residing in the tick vector, competing with the tick for nutrients in the blood meal. Metabolomics is an effective methodology to explore dynamics of spirochete survival and multiplication in tick vectors before transmission to a vertebrate host via tick saliva. Using gas chromatography coupled to mass spectrometry, we identified statistically significant differences in the metabolic profile among uninfected I. scapularis nymphal ticks, B. burgdorferi-infected nymphal ticks and B. mayonii-infected nymphal ticks by measuring metabolism every 24 hours over the course of their up to 96 hour blood meals. Specifically, differences in the abundance of purines, amino acids, carbohydrates, and fatty acids during the blood meal among the three groups of nymphal ticks suggest that B. mayonii and B. burgdorferi may have different metabolic capabilities, especially during later stages of nymphal feeding. Understanding mechanisms underlying variable metabolic requirements of different Lyme disease spirochetes within tick vectors could potentially aid development of novel methods to control spirochete transmission.


Subject(s)
Arachnid Vectors/metabolism , Borrelia burgdorferi/metabolism , Borrelia/metabolism , Ixodes/metabolism , Metabolome , Nymph/metabolism , Animals , Arachnid Vectors/microbiology , Borrelia/growth & development , Borrelia burgdorferi/growth & development , Female , Gas Chromatography-Mass Spectrometry , Host-Pathogen Interactions , Ixodes/microbiology , Lyme Disease/microbiology , Mice , Nymph/microbiology
4.
Ticks Tick Borne Dis ; 8(1): 196-200, 2017 01.
Article in English | MEDLINE | ID: mdl-27838290

ABSTRACT

A novel species within the Borrelia burgdorferi sensu lato complex, Borrelia mayonii, was recently described and found to be associated with Lyme borreliosis in the Upper Midwest of the United States. The blacklegged tick, Ixodes scapularis, is naturally infected with B. mayonii in the Upper Midwest and has been experimentally demonstrated to serve as a vector for this spirochete. Natural vertebrate reservoirs for B. mayonii remain unknown. In this study, we demonstrate that an experimental spirochete host, the CD-1 strain outbred white mouse, can maintain active infection with B. mayonii for up to 1year: infected mice consistently yielded ear biopsies containing motile spirochetes from 29 to 375days after they were first infected via tick bite. Infection rates in resultant nymphal ticks varied greatly both over time for larvae fed on the same individual mouse at different time points after infection (2-42%) and for larvae fed on different mice at a given time point up to 8 months after infection (0-48%). Infection rates were lower in nymphs fed as larvae on mice 10-12 months after infection (2-3% for 5 mice and 9.8% for 1 mouse). In addition to ear biopsies, B. mayonii was detected from bladder, heart, and spinal cord of infected mice when they were sacrificed 163-375days after initial infection via tick bite. Examination of blood from mice determined to be infected with B. mayonii by ear biopsy did not produce evidence of B. mayonii DNA in blood taken 8-375days after the mice were first infected via tick bite.


Subject(s)
Borrelia burgdorferi Group/physiology , Ixodes/physiology , Lyme Disease/transmission , Animals , Arachnid Vectors , Ixodes/microbiology , Larva/physiology , Lyme Disease/microbiology , Mice
5.
Ticks Tick Borne Dis ; 7(5): 665-669, 2016 07.
Article in English | MEDLINE | ID: mdl-26922324

ABSTRACT

A novel species within the Borrelia burgdorferi sensu lato complex, provisionally named Borrelia mayonii, was recently found to be associated with Lyme borreliosis in the Upper Midwest of the United States. Moreover, B. mayonii was detected from host-seeking Ixodes scapularis, the primary vector of B. burgdorferi sensu stricto in the eastern United States. We therefore conducted a study to confirm the experimental vector competence of I. scapularis for B. mayonii (strain MN14-1420), using colony ticks originating from adults collected in Connecticut and CD-1 white mice. Larvae fed on mice 10 weeks after needle-inoculation with B. mayonii acquired spirochetes and maintained infection through the nymphal stage at an average rate of 12.9%. In a transmission experiment, 40% of naïve mice exposed to a single infected nymph developed viable infections, as compared with 87% of mice fed upon by 2-3 infected nymphs. Transmission of B. mayonii by one or more feeding infected nymphs was uncommon up to 48h after attachment (one of six mice developed viable infection) but occurred frequently when nymphs were allowed to remain attached for 72-96h or feed to completion (11 of 16 mice developed viable infection). Mice infected via tick bite maintained viable infection with B. mayonii, as determined by ear biopsy culture, for at least 28 weeks. Our results demonstrate that I. scapularis is capable of serving as a vector of B. mayonii. This finding, together with data showing that field-collected I. scapularis are infected with B. mayonii, indicate that I. scapularis likely is a primary vector to humans of this recently recognized Lyme borreliosis spirochete.


Subject(s)
Arachnid Vectors/microbiology , Borrelia burgdorferi Group/isolation & purification , Ixodes/microbiology , Lyme Disease/transmission , Animals , Connecticut , Disease Models, Animal
6.
Sci Rep ; 5: 9242, 2015 Mar 18.
Article in English | MEDLINE | ID: mdl-25784490

ABSTRACT

Infection with Mycobacterium ulcerans causes Buruli Ulcer, a neglected tropical disease. Mosquito vectors are suspected to participate in the transmission and environmental maintenance of the bacterium. However, mechanisms and consequences of mosquito contamination by M. ulcerans are not well understood. We evaluated the metabolome of the Anopheles gambiae mosquito to profile the metabolic changes associated with bacterial colonization. Contamination of mosquitoes with live M. ulcerans bacilli results in disruptions to lipid metabolic pathways of the mosquito, specifically the utilization of glycerolipid molecules, an affect that was not observed in mosquitoes exposed to dead M. ulcerans. These results are consistent with aberrations of lipid metabolism described in other mycobacterial infections, implying global host-pathogen interactions shared across diverse saprophytic and pathogenic mycobacterial species. This study implicates features of the bacterium, such as the putative M. ulcerans encoded phospholipase enzyme, which promote virulence, survival, and active adaptation in concert with mosquito development, and provides significant groundwork for enhanced studies of the vector-pathogen interactions using metabolomics profiling. Lastly, metabolic and survival data suggest an interaction which is unlikely to contribute to transmission of M. ulcerans by A. gambiae and more likely to contribute to persistence of M. ulcerans in waters cohabitated by both organisms.


Subject(s)
Anopheles/metabolism , Mass Spectrometry , Metabolome , Mycobacterium ulcerans/pathogenicity , Animals , Anopheles/microbiology , Cluster Analysis , Fatty Acids/metabolism , Phospholipids/metabolism , Principal Component Analysis
SELECTION OF CITATIONS
SEARCH DETAIL