Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Am Soc Nephrol ; 34(4): 533-553, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36846952

ABSTRACT

SIGNIFICANCE STATEMENT: Alterations in gut microbiota contribute to the pathophysiology of a diverse range of diseases, leading to suggestions that chronic uremia may cause intestinal dysbiosis that contributes to the pathophysiology of CKD. Various small, single-cohort rodent studies have supported this hypothesis. In this meta-analysis of publicly available repository data from studies of models of kidney disease in rodents, cohort variation far outweighed any effect of experimental kidney disease on the gut microbiota. No reproducible changes in animals with kidney disease were seen across all cohorts, although a few trends observed in most experiments may be attributable to kidney disease. The findings suggest that rodent studies do not provide evidence for the existence of "uremic dysbiosis" and that single-cohort studies are unsuitable for producing generalizable results in microbiome research. BACKGROUND: Rodent studies have popularized the notion that uremia may induce pathological changes in the gut microbiota that contribute to kidney disease progression. Although single-cohort rodent studies have yielded insights into host-microbiota relationships in various disease processes, their relevance is limited by cohort and other effects. We previously reported finding metabolomic evidence that batch-to-batch variations in the microbiome of experimental animals are significant confounders in an experimental study. METHODS: To attempt to identify common microbial signatures that transcend batch variability and that may be attributed to the effect of kidney disease, we downloaded all data describing the molecular characterization of the gut microbiota in rodents with and without experimental kidney disease from two online repositories comprising 127 rodents across ten experimental cohorts. We reanalyzed these data using the DADA2 and Phyloseq packages in R, a statistical computing and graphics system, and analyzed data both in a combined dataset of all samples and at the level of individual experimental cohorts. RESULTS: Cohort effects accounted for 69% of total sample variance ( P <0.001), substantially outweighing the effect of kidney disease (1.9% of variance, P =0.026). We found no universal trends in microbial population dynamics in animals with kidney disease, but observed some differences (increased alpha diversity, a measure of within-sample bacterial diversity; relative decreases in Lachnospiraceae and Lactobacillus ; and increases in some Clostridia and opportunistic taxa) in many cohorts that might represent effects of kidney disease on the gut microbiota . CONCLUSIONS: These findings suggest that current evidence that kidney disease causes reproducible patterns of dysbiosis is inadequate. We advocate meta-analysis of repository data as a way of identifying broad themes that transcend experimental variation.


Subject(s)
Kidney Diseases , Renal Insufficiency, Chronic , Uremia , Animals , Rodentia , Dysbiosis/microbiology , Adenosine Deaminase , Intercellular Signaling Peptides and Proteins , Renal Insufficiency, Chronic/etiology
2.
Biochem Soc Trans ; 51(2): 887-896, 2023 04 26.
Article in English | MEDLINE | ID: mdl-37099394

ABSTRACT

The preterm infant microbiota is dominated by Enterobacteriaceae (Escherichia, Klebsiella or Enterobacter spp.), Enterococcus and Staphylococcus spp. Recent work has demonstrated the development of this microbiota is predictable and driven by simple microbe-microbe interactions. Because of their systemic immaturity, including an underdeveloped immune system, preterm infants are susceptible to a range of infections. Numerous retrospective studies have examined the association of the preterm gut microbiota with diseases such as necrotizing enterocolitis (NEC), early-onset sepsis and late-onset sepsis. To date, no single bacterium has been associated with infection in these infants, but a Klebsiella/Enterococcus-dominated faecal microbiota is associated with an increased risk of developing NEC. Staphylococci aid and enterococci inhibit establishment/maintenance of gastrointestinal Klebsiella populations in preterm infants, though the mechanisms underlying these interactions are poorly understood. Klebsiella spp. recovered from healthy and sick preterm infants display similar antimicrobial resistance and virulence profiles, giving no clues as to why some infants develop potentially life-threatening diseases while others do not. The identification of cytotoxin-producing Klebsiella oxytoca sensu lato in the gut microbiota of some preterm infants has led to the suggestion that these bacteria may contribute to NEC in a subset of neonates. This mini review highlights current knowledge on Klebsiella spp. contributing to the preterm gut microbiota and provides insights into areas of research that warrant further attention.


Subject(s)
Infant, Premature , Sepsis , Infant , Infant, Newborn , Humans , Retrospective Studies , Klebsiella , Feces/microbiology , Sepsis/microbiology , Bacteria
3.
J Appl Microbiol ; 134(4)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37070958

ABSTRACT

AIMS: This study aimed to characterize the lytic phage vB_KmiS-Kmi2C, isolated from sewage water on a GES-positive strain of Klebsiella michiganensis. METHODS AND RESULTS: Comparative phylogenetic and network-based analyses were used to characterize the genome of phage vB_KmiS-Kmi2C (circular genome of 42 234 bp predicted to encode 55 genes), demonstrating it shared little similarity with other known phages. The phage was lytic on clinical strains of K. oxytoca (n = 2) and K. michiganensis (n = 4), and was found to both prevent biofilm formation and disrupt established biofilms produced by these strains. CONCLUSIONS: We have identified a phage capable of killing clinically relevant members of the K. oxytoca complex (KoC). The phage represents a novel virus family (proposed name Dilsviridae) and genus (proposed name Dilsvirus).


Subject(s)
Bacteriophages , Bacteriophages/genetics , Klebsiella oxytoca/genetics , Phylogeny , Biofilms , Genome, Viral
4.
Cell Mol Life Sci ; 79(2): 80, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35044528

ABSTRACT

The gut and brain link via various metabolic and signalling pathways, each with the potential to influence mental, brain and cognitive health. Over the past decade, the involvement of the gut microbiota in gut-brain communication has become the focus of increased scientific interest, establishing the microbiota-gut-brain axis as a field of research. There is a growing number of association studies exploring the gut microbiota's possible role in memory, learning, anxiety, stress, neurodevelopmental and neurodegenerative disorders. Consequently, attention is now turning to how the microbiota can become the target of nutritional and therapeutic strategies for improved brain health and well-being. However, while such strategies that target the gut microbiota to influence brain health and function are currently under development with varying levels of success, still very little is yet known about the triggers and mechanisms underlying the gut microbiota's apparent influence on cognitive or brain function and most evidence comes from pre-clinical studies rather than well controlled clinical trials/investigations. Filling the knowledge gaps requires establishing a standardised methodology for human studies, including strong guidance for specific focus areas of the microbiota-gut-brain axis, the need for more extensive biological sample analyses, and identification of relevant biomarkers. Other urgent requirements are new advanced models for in vitro and in vivo studies of relevant mechanisms, and a greater focus on omics technologies with supporting bioinformatics resources (training, tools) to efficiently translate study findings, as well as the identification of relevant targets in study populations. The key to building a validated evidence base rely on increasing knowledge sharing and multi-disciplinary collaborations, along with continued public-private funding support. This will allow microbiota-gut-brain axis research to move to its next phase so we can identify realistic opportunities to modulate the microbiota for better brain health.


Subject(s)
Brain-Gut Axis , Brain/physiology , Gastrointestinal Microbiome , Animals , Brain/physiopathology , Cognition , Humans , Metabolic Networks and Pathways , Signal Transduction
5.
Microbiology (Reading) ; 168(9)2022 09.
Article in English | MEDLINE | ID: mdl-36156193

ABSTRACT

High levels of antimicrobial resistance among members of the Klebsiella oxytoca complex (KoC) have led to renewed interest in the use of bacteriophage (phage) therapy to tackle infections caused by these bacteria. In this study we characterized two lytic phages, vB_KmiM-2Di and vB_KmiM-4Dii, that were isolated from sewage water against two GES-5-positive Klebsiella michiganensis strains (PS_Koxy2 and PS_Koxy4, respectively). ViPTree analysis showed both phages belonged to the genus Slopekvirus. rpoB gene-based sequence analysis of 108 presumptive K. oxytoca isolates (n=59 clinical, n=49 veterinary) found K. michiganensis to be more prevalent (46 % clinical and 43 % veterinary, respectively) than K. oxytoca (40 % clinical and 6 % veterinary, respectively). Host range analysis against these 108 isolates found both vB_KmiM-2Di and vB_KmiM-4Dii showed broad lytic activity against KoC species. Several hypothetical homing endonuclease genes were encoded within the genomes of both phages, which may contribute to their broad host range. Differences in the tail fibre protein may explain the non-identical host range of the two phages. Pangenome analysis of 24 slopekviruses found that genomes within this genus are highly conserved, with more than 50 % of all predicted coding sequences representing core genes at ≥95 % identity and ≥70 % coverage. Given their broad host ranges, our results suggest vB_KmiM-2Di and vB_KmiM-4Dii represent attractive potential therapeutics. In addition, current recommendations for phage-based pangenome analyses may require revision.


Subject(s)
Anti-Infective Agents , Bacteriophages , Bacteriophages/genetics , Endonucleases , Genome, Viral , Genomics/methods , Host Specificity , Sewage , Water
6.
Cancer Immunol Immunother ; 71(11): 2619-2629, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35316367

ABSTRACT

The role of microbiota:immune system dysregulation in the etiology of colorectal cancer (CRC) is poorly understood. CRC develops in gut epithelium, accompanied by low level inflammatory signaling, intestinal microbial dysbiosis and immune dysfunction. We examined populations of intraepithelial lymphocytes in non-affected colonic mucosa of CRC and healthy donors and circulating immune memory to commensal bacterial species and yeasts. γδ T cells and resident memory T cells, populations with a regulatory CD39-expressing phenotype, were found at lower frequencies in the colonic tissue of CRC donors compared to healthy controls. Patterns of T cell proliferative responses to a panel of commensal bacteria were distinct in CRC, while B cell memory responses to several bacteria/yeast were significantly increased, accompanied by increased proportions of effector memory B cells, transitional B cells and plasmablasts in blood. IgA responses to mucosal microbes were unchanged. Our data describe a novel immune signature with similarities to and differences from that of inflammatory bowel disease. They implicate B cell dysregulation as a potential contributor to parainflammation and identify pathways of weakened barrier function and tumor surveillance in CRC-susceptible individuals.


Subject(s)
Colorectal Neoplasms , Microbiota , Bacteria , Colorectal Neoplasms/pathology , Dysbiosis/microbiology , Humans , Immunoglobulin A , Intestinal Mucosa , Memory T Cells
7.
Gut ; 70(11): 2105-2114, 2021 11.
Article in English | MEDLINE | ID: mdl-33975870

ABSTRACT

OBJECTIVE: Gut microbial products are involved in regulation of host metabolism. In human and experimental studies, we explored the potential role of hippurate, a hepatic phase 2 conjugation product of microbial benzoate, as a marker and mediator of metabolic health. DESIGN: In 271 middle-aged non-diabetic Danish individuals, who were stratified on habitual dietary intake, we applied 1H-nuclear magnetic resonance (NMR) spectroscopy of urine samples and shotgun-sequencing-based metagenomics of the gut microbiome to explore links between the urine level of hippurate, measures of the gut microbiome, dietary fat and markers of metabolic health. In mechanistic experiments with chronic subcutaneous infusion of hippurate to high-fat-diet-fed obese mice, we tested for causality between hippurate and metabolic phenotypes. RESULTS: In the human study, we showed that urine hippurate positively associates with microbial gene richness and functional modules for microbial benzoate biosynthetic pathways, one of which is less prevalent in the Bacteroides 2 enterotype compared with Ruminococcaceae or Prevotella enterotypes. Through dietary stratification, we identify a subset of study participants consuming a diet rich in saturated fat in which urine hippurate concentration, independently of gene richness, accounts for links with metabolic health. In the high-fat-fed mice experiments, we demonstrate causality through chronic infusion of hippurate (20 nmol/day) resulting in improved glucose tolerance and enhanced insulin secretion. CONCLUSION: Our human and experimental studies show that a high urine hippurate concentration is a general marker of metabolic health, and in the context of obesity induced by high-fat diets, hippurate contributes to metabolic improvements, highlighting its potential as a mediator of metabolic health.


Subject(s)
Biomarkers/metabolism , Gastrointestinal Microbiome , Hippurates/metabolism , Animals , Biodiversity , Denmark , Female , Humans , Magnetic Resonance Spectroscopy , Male , Metabolome , Metagenomics , Mice , Middle Aged , Phenotype
8.
J Proteome Res ; 19(8): 3326-3339, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32544340

ABSTRACT

Methotrexate (MTX) is a chemotherapeutic agent that can cause a range of toxic side effects including gastrointestinal damage, hepatotoxicity, myelosuppression, and nephrotoxicity and has potentially complex interactions with the gut microbiome. Following untargeted UPLC-qtof-MS analysis of urine and fecal samples from male Sprague-Dawley rats administered at either 0, 10, 40, or 100 mg/kg of MTX, dose-dependent changes in the endogenous metabolite profiles were detected. Semiquantitative targeted UPLC-MS detected MTX excreted in urine as well as MTX and two metabolites, 2,4-diamino-N-10-methylpteroic acid (DAMPA) and 7-hydroxy-MTX, in the feces. DAMPA is produced by the bacterial enzyme carboxypeptidase glutamate 2 (CPDG2) in the gut. Microbiota profiling (16S rRNA gene amplicon sequencing) of fecal samples showed an increase in the relative abundance of Firmicutes over the Bacteroidetes at low doses of MTX but the reverse at high doses. Firmicutes relative abundance was positively correlated with DAMPA excretion in feces at 48 h, which were both lower at 100 mg/kg compared to that seen at 40 mg/kg. Overall, chronic exposure to MTX appears to induce community and functionality changes in the intestinal microbiota, inducing downstream perturbations in CPDG2 activity, and thus may delay MTX detoxication to DAMPA. This reduction in metabolic clearance might be associated with increased gastrointestinal toxicity.


Subject(s)
Gastrointestinal Microbiome , Methotrexate , Animals , Chromatography, Liquid , Feces , Male , Methotrexate/toxicity , RNA, Ribosomal, 16S/genetics , Rats , Rats, Sprague-Dawley , Tandem Mass Spectrometry
9.
Gut ; 65(3): 426-36, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26100928

ABSTRACT

OBJECTIVE: Individuals with obesity and type 2 diabetes differ from lean and healthy individuals in their abundance of certain gut microbial species and microbial gene richness. Abundance of Akkermansia muciniphila, a mucin-degrading bacterium, has been inversely associated with body fat mass and glucose intolerance in mice, but more evidence is needed in humans. The impact of diet and weight loss on this bacterial species is unknown. Our objective was to evaluate the association between faecal A. muciniphila abundance, faecal microbiome gene richness, diet, host characteristics, and their changes after calorie restriction (CR). DESIGN: The intervention consisted of a 6-week CR period followed by a 6-week weight stabilisation diet in overweight and obese adults (N=49, including 41 women). Faecal A. muciniphila abundance, faecal microbial gene richness, diet and bioclinical parameters were measured at baseline and after CR and weight stabilisation. RESULTS: At baseline A. muciniphila was inversely related to fasting glucose, waist-to-hip ratio and subcutaneous adipocyte diameter. Subjects with higher gene richness and A. muciniphila abundance exhibited the healthiest metabolic status, particularly in fasting plasma glucose, plasma triglycerides and body fat distribution. Individuals with higher baseline A. muciniphila displayed greater improvement in insulin sensitivity markers and other clinical parameters after CR. These participants also experienced a reduction in A. muciniphila abundance, but it remained significantly higher than in individuals with lower baseline abundance. A. muciniphila was associated with microbial species known to be related to health. CONCLUSIONS: A. muciniphila is associated with a healthier metabolic status and better clinical outcomes after CR in overweight/obese adults. The interaction between gut microbiota ecology and A. muciniphila warrants further investigation. TRIAL REGISTRATION NUMBER: NCT01314690.


Subject(s)
Diet, Reducing , Feces/microbiology , Gastrointestinal Microbiome , Obesity/diet therapy , Verrucomicrobia/isolation & purification , Adult , Aged , Biomarkers/blood , Blood Glucose/metabolism , Female , Humans , Insulin Resistance , Male , Middle Aged , Obesity/blood , Obesity/microbiology , Treatment Outcome , Triglycerides/blood
10.
Antonie Van Leeuwenhoek ; 109(5): 603-10, 2016 May.
Article in English | MEDLINE | ID: mdl-26910402

ABSTRACT

Three human clinical strains (W9323(T), X0209(T) and X0394) isolated from a lung biopsy, blood and cerebral spinal fluid, respectively, were characterised using a polyphasic taxonomic approach. Comparative analysis of the 16S rRNA gene sequences showed the three strains belong to two novel branches within the genus Kroppenstedtia: 16S rRNA gene sequence analysis of W9323(T) showed close sequence similarity to Kroppenstedtia eburnea JFMB-ATE(T) (95.3 %), Kroppenstedtia guangzhouensis GD02(T) (94.7 %) and strain X0209(T) (94.6 %); sequence analysis of strain X0209(T) showed close sequence similarity to K. eburnea JFMB-ATE(T) (96.4 %) and K. guangzhouensis GD02(T) (96.0 %). Strains X0209(T) and X0394 were 99.9 % similar to each other by 16S rRNA gene sequence analysis. The DNA-DNA relatedness was 94.6 %, confirming that X0209(T) and X0394 belong to the same species. Chemotaxonomic data for strains W9323(T) and X0209(T) were consistent with those described for the members of the genus Kroppenstedtia: the peptidoglycan was found to contain LL-diaminopimelic acid; the major cellular fatty acids were identified as iso-C15 and anteiso-C15; and the major menaquinone was identified as MK-7. Differences in endospore morphology, carbon source utilisation profiles, and cell wall sugar patterns of strains W9323(T) and X0209(T), supported by phylogenetic analysis, enabled us to conclude that the strains each represent a new species within the genus Kroppenstedtia, for which the names Kroppenstedtia pulmonis sp. nov. (type strain W9323(T) = DSM 45752(T) = CCUG 68107(T)) and Kroppenstedtia sanguinis sp. nov. (type strain X0209(T) = DSM 45749(T) = CCUG 38657(T)) are proposed.


Subject(s)
Gram-Positive Bacterial Infections/microbiology , Thermoactinomyces/isolation & purification , Adolescent , Aged , Bacterial Typing Techniques , DNA, Bacterial/genetics , Female , Gram-Positive Bacterial Infections/blood , Gram-Positive Bacterial Infections/cerebrospinal fluid , Humans , Lung/microbiology , Male , Middle Aged , Phylogeny , RNA, Ribosomal, 16S/genetics , Spores, Bacterial/cytology , Thermoactinomyces/classification , Thermoactinomyces/cytology , Thermoactinomyces/genetics
11.
Microbiology (Reading) ; 161(Pt 3): 565-79, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25533445

ABSTRACT

This study monitored the dynamics and diversity of the human faecal 'Atopobium cluster' over a 3-month period using a polyphasic approach. Fresh faecal samples were collected fortnightly from 13 healthy donors (six males and seven females) aged between 26 and 61 years. FISH was used to enumerate total (EUB338mix) and 'Atopobium cluster' (ATO291) bacteria, with counts ranging between 1.12×10(11) and 9.95×10(11), and 1.03×10(9) and 1.16×10(11) cells (g dry weight faeces)(-1), respectively. The 'Atopobium cluster' population represented 0.2-22 % of the total bacteria, with proportions donor-dependent. Denaturing gradient gel electrophoresis (DGGE) using 'Atopobium cluster'-specific primers demonstrated faecal populations of these bacteria were relatively stable, with bands identified as Collinsella aerofaciens, Collinsella intestinalis/Collinsella stercoris, Collinsella tanakaei, Coriobacteriaceae sp. PEAV3-3, Eggerthella lenta, Gordonibacter pamelaeae, Olsenella profusa, Olsenella uli and Paraeggerthella hongkongensis in the DGGE profiles of individuals. Colony PCR was used to identify 'Atopobium cluster' bacteria isolated from faeces (n = 224 isolates). 16S rRNA gene sequence analysis of isolates demonstrated Collinsella aerofaciens represented the predominant (88 % of isolates) member of the 'Atopobium cluster' found in human faeces, being found in nine individuals. Eggerthella lenta was identified in three individuals (3.6 % of isolates). Isolates of Collinsella tanakaei, an 'Enorma' sp. and representatives of novel species belonging to the 'Atopobium cluster' were also identified in the study. Phenotypic characterization of the isolates demonstrated their highly saccharolytic nature and heterogeneous phenotypic profiles, and 97 % of the isolates displayed lipase activity.


Subject(s)
Actinobacteria/isolation & purification , Bacteria/isolation & purification , Biodiversity , Feces/microbiology , Microbiota , Actinobacteria/classification , Actinobacteria/genetics , Adult , Bacteria/classification , Bacteria/genetics , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Female , Humans , Male , Middle Aged , Molecular Sequence Data , Phenotype , Phylogeny , RNA, Ribosomal, 16S/genetics
12.
J Dairy Sci ; 96(8): 4945-57, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23769356

ABSTRACT

This study reports on the identification and characterization of bacteriophages isolated from cheese-production facilities that use undefined, mixed starter cultures. Phage screening was carried out on whey samples isolated from 3 factories, 2 utilizing one particular undefined starter mixture and 1 utilizing another undefined starter mixture. Phage screening was carried out using 40 strains isolated from the 2 mixed starter cultures, and phages were profiled using host range, electron microscopy, multiplex PCR, and DNA restriction analysis. Twenty distinct lactococcal phages were identified based on host range and DNA restriction profiles, all belonging to the 936-type phage species. Nineteen of these phages were found to be able to infect both recognized subspecies of Lactococcus lactis. Restriction of phage DNA isolated using a newly developed guanidinium thiocyanate disruption method showed that the genomes of the 20 isolated phages were between 26 and 31 kb in size. It is evident from this study that the use of mixed starters creates an ideal environment for the proliferation of different phages with slightly varying host ranges. Furthermore, in this environment, members of the 936-type phage species clearly dominated the phage population.


Subject(s)
Bacteriophages/metabolism , Cheese/virology , Lactococcus/virology , Bacteriophages/isolation & purification , Biodiversity , Cheese/microbiology , Food Technology , Microscopy, Electron , Multiplex Polymerase Chain Reaction
13.
Anaerobe ; 22: 90-6, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23764415

ABSTRACT

With the exceptions of the bifidobacteria, propionibacteria and coriobacteria, the Actinobacteria associated with the human gastrointestinal tract have received little attention. This has been due to the seeming absence of these bacteria from most clone libraries. In addition, many of these bacteria have fastidious growth and atmospheric requirements. A recent cultivation-based study has shown that the Actinobacteria of the human gut may be more diverse than previously thought. The aim of this study was to develop a denaturing gradient gel electrophoresis (DGGE) approach for characterizing Actinobacteria present in faecal samples. Amount of DNA added to the Actinobacteria-specific PCR used to generate strong PCR products of equal intensity from faecal samples of five infants, nine adults and eight elderly adults was anti-correlated with counts of bacteria obtained using fluorescence in situ hybridization probe HGC69A. A nested PCR using Actinobacteria-specific and universal PCR-DGGE primers was used to generate profiles for the Actinobacteria. Cloning of sequences from the DGGE bands confirmed the specificity of the Actinobacteria-specific primers. In addition to members of the genus Bifidobacterium, species belonging to the genera Propionibacterium, Microbacterium, Brevibacterium, Actinomyces and Corynebacterium were found to be part of the faecal microbiota of healthy humans.


Subject(s)
Actinobacteria/isolation & purification , Feces/microbiology , Gastrointestinal Tract/microbiology , Microbiota , Actinobacteria/genetics , Adult , Aged , Denaturing Gradient Gel Electrophoresis , Female , Humans , Infant , Male , Middle Aged , Young Adult
14.
Nat Microbiol ; 8(8): 1392-1396, 2023 08.
Article in English | MEDLINE | ID: mdl-37524974

ABSTRACT

Over the past two decades, interest in human microbiome research has increased exponentially. Regrettably, this increased activity has brought with it a degree of hype and misinformation, which can undermine progress and public confidence in the research. Here we highlight selected human microbiome myths and misconceptions that lack a solid evidence base. By presenting these examples, we hope to draw increased attention to the implications of inaccurate dogma becoming embedded in the literature, and the importance of acknowledging nuance when describing the complex human microbiome.


Subject(s)
Communication , Humans
15.
Access Microbiol ; 5(11)2023.
Article in English | MEDLINE | ID: mdl-38074105

ABSTRACT

Strain M1325/93/1 (herein referred to by our laboratory identifier, GFKo1) of Lelliottia amnigena was isolated from the lung of a harbour porpoise in 1993. The genome sequence and antimicrobial resistance profile (genomic, phenotypic) of the strain were generated, with the genomic data compared with those from closely related bacteria. We demonstrate that the recently described chromosomally encoded AmpC ß-lactamase bla LAQ is a core gene of L. amnigena , and suggest that new variants of this class of lactamase are encoded by other members of the genus Lelliottia . Although presence of bla LAQ is ubiquitous across the currently sequenced members of L. amnigena , we highlight that strain GFKo1 is sensitive to ampicillin and cephalosporins. These data suggest that bla LAQ may act as a useful genetic marker for identification of L. amnigena strains, but its presence may not correlate with expected phenotypic resistances. Further studies are required to determine the regulatory mechanisms of bla LAQ in L. amnigena .

16.
Microb Genom ; 9(10)2023 10.
Article in English | MEDLINE | ID: mdl-37902186

ABSTRACT

Catheter-associated urinary tract infections (CAUTIs) represent one of the major healthcare-associated infections, and Pseudomonas aeruginosa is a common Gram-negative bacterium associated with catheter infections in Egyptian clinical settings. The present study describes the phenotypic and genotypic characteristics of 31 P. aeruginosa isolates recovered from CAUTIs in an Egyptian hospital over a 3 month period. Genomes of isolates were of good quality and were confirmed to be P. aeruginosa by comparison to the type strain (average nucleotide identity, phylogenetic analysis). Clonal diversity among the isolates was determined; eight different sequence types were found (STs 244, 357, 381, 621, 773, 1430, 1667 and 3765), of which ST357 and ST773 are considered to be high-risk clones. Antimicrobial resistance (AMR) testing according to European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines showed that the isolates were highly resistant to quinolones [ciprofloxacin (12/31, 38.7 %) and levofloxacin (9/31, 29 %) followed by tobramycin (10/31, 32.5 %)] and cephalosporins (7/31, 22.5 %). Genotypic analysis of resistance determinants predicted all isolates to encode a range of AMR genes, including those conferring resistance to aminoglycosides, ß-lactamases, fluoroquinolones, fosfomycin, sulfonamides, tetracyclines and chloramphenicol. One isolate was found to carry a 422 938 bp pBT2436-like megaplasmid encoding OXA-520, the first report from Egypt of this emerging family of clinically important mobile genetic elements. All isolates were able to form biofilms and were predicted to encode virulence genes associated with adherence, antimicrobial activity, anti-phagocytosis, phospholipase enzymes, iron uptake, proteases, secretion systems and toxins. The present study shows how phenotypic analysis alongside genomic analysis may help us understand the AMR and virulence profiles of P. aeruginosa contributing to CAUTIs in Egypt.


Subject(s)
Pseudomonas aeruginosa , Urinary Tract Infections , Humans , Pseudomonas aeruginosa/genetics , Egypt , Phylogeny , Genomics , Anti-Bacterial Agents/pharmacology , Catheters
17.
J Med Microbiol ; 72(11)2023 Nov.
Article in English | MEDLINE | ID: mdl-37910167

ABSTRACT

Introduction. Bacteroides fragilis is a Gram-negative anaerobe that is a member of the human gastrointestinal microbiota and is frequently found as an extra-intestinal opportunistic pathogen. B. fragilis comprises two distinct groups - divisions I and II - characterized by the presence/absence of genes [cepA and ccrA (cfiA), respectively] that confer resistance to ß-lactam antibiotics by either serine or metallo-ß-lactamase production. No large-scale analyses of publicly available B. fragilis sequence data have been undertaken, and the resistome of the species remains poorly defined.Hypothesis/Gap Statement. Reclassification of divisions I and II B. fragilis as two distinct species has been proposed but additional evidence is required.Aims. To investigate the genomic diversity of GenBank B. fragilis genomes and establish the prevalence of division I and II strains among publicly available B. fragilis genomes, and to generate further evidence to demonstrate that B. fragilis division I and II strains represent distinct genomospecies.Methodology. High-quality (n=377) genomes listed as B. fragilis in GenBank were included in pangenome and functional analyses. Genome data were also subject to resistome profiling using The Comprehensive Antibiotic Resistance Database.Results. Average nucleotide identity and phylogenetic analyses showed B. fragilis divisions I and II represent distinct species: B. fragilis sensu stricto (n=275 genomes) and B. fragilis A (n=102 genomes; Genome Taxonomy Database designation), respectively. Exploration of the pangenome of B. fragilis sensu stricto and B. fragilis A revealed separation of the two species at the core and accessory gene levels.Conclusion. The findings indicate that B. fragilis A, previously referred to as division II B. fragilis, is an individual species and distinct from B. fragilis sensu stricto. The B. fragilis pangenome analysis supported previous genomic, phylogenetic and resistome screening analyses collectively reinforcing that divisions I and II are two separate species. In addition, it was confirmed that differences in the accessory genes of B. fragilis divisions I and II are primarily associated with carbohydrate metabolism and suggest that differences other than antimicrobial resistance could also be used to distinguish between these two species.


Subject(s)
Bacterial Infections , Bacteroides fragilis , Humans , Bacteroides fragilis/genetics , Phylogeny , Genomics , Databases, Factual
18.
Tissue Barriers ; 11(1): 2073175, 2023 Jan 02.
Article in English | MEDLINE | ID: mdl-35596559

ABSTRACT

The sequential activity of gut microbial and host processes can exert a powerful modulatory influence on dietary components, as exemplified by the metabolism of the amino acids tyrosine and phenylalanine to p-cresol by gut microbes, and then to p-cresol glucuronide (pCG) by host enzymes. Although such glucuronide conjugates are classically thought to be biologically inert, there is accumulating evidence that this may not always be the case. We investigated the activity of pCG, studying its interactions with the cerebral vasculature and the brain in vitro and in vivo. Male C57Bl/6 J mice were used to assess blood-brain barrier (BBB) permeability and whole-brain transcriptomic changes in response to pCG treatment. Effects were then further explored using the human cerebromicrovascular endothelial cell line hCMEC/D3, assessing paracellular permeability, transendothelial electrical resistance and barrier protein expression. Mice exposed to pCG showed reduced BBB permeability and significant changes in whole-brain transcriptome expression. Surprisingly, treatment of hCMEC/D3 cells with pCG had no notable effects until co-administered with bacterial lipopolysaccharide, at which point it was able to prevent the permeabilizing effects of endotoxin. Further analysis suggested that pCG acts as an antagonist at the principal lipopolysaccharide receptor TLR4. The amino acid phase II metabolic product pCG is biologically active at the BBB, antagonizing the effects of constitutively circulating lipopolysaccharide. These data add to the growing literature showing glucuronide conjugates to be more than merely metabolic waste products and highlight the complexity of gut microbe to host communication pathways underlying the gut-brain axis.


Subject(s)
Blood-Brain Barrier , Gastrointestinal Microbiome , Male , Mice , Humans , Animals , Blood-Brain Barrier/metabolism , Glucuronides/metabolism , Glucuronides/pharmacology , Amino Acids/metabolism , Amino Acids/pharmacology , Lipopolysaccharides/metabolism , Lipopolysaccharides/pharmacology
19.
Cell Rep Med ; 4(12): 101341, 2023 12 19.
Article in English | MEDLINE | ID: mdl-38118419

ABSTRACT

The gut microbiota contributes to the pathophysiology of non-alcoholic fatty liver disease (NAFLD). Histidine is a key energy source for the microbiota, scavenging it from the host. Its role in NAFLD is poorly known. Plasma metabolomics, liver transcriptomics, and fecal metagenomics were performed in three human cohorts coupled with hepatocyte, rodent, and Drosophila models. Machine learning analyses identified plasma histidine as being strongly inversely associated with steatosis and linked to a hepatic transcriptomic signature involved in insulin signaling, inflammation, and trace amine-associated receptor 1. Circulating histidine was inversely associated with Proteobacteria and positively with bacteria lacking the histidine utilization (Hut) system. Histidine supplementation improved NAFLD in different animal models (diet-induced NAFLD in mouse and flies, ob/ob mouse, and ovariectomized rats) and reduced de novo lipogenesis. Fecal microbiota transplantation (FMT) from low-histidine donors and mono-colonization of germ-free flies with Enterobacter cloacae increased triglyceride accumulation and reduced histidine content. The interplay among microbiota, histidine catabolism, and NAFLD opens therapeutic opportunities.


Subject(s)
Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Obesity, Morbid , Humans , Mice , Rats , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Histidine/therapeutic use , Gastrointestinal Microbiome/physiology , Diet, High-Fat
20.
Microbiome ; 11(1): 100, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37158960

ABSTRACT

BACKGROUND AND AIMS: The gut microbiota is implicated in the pathogenesis of colorectal cancer (CRC). We aimed to map the CRC mucosal microbiota and metabolome and define the influence of the tumoral microbiota on oncological outcomes. METHODS: A multicentre, prospective observational study was conducted of CRC patients undergoing primary surgical resection in the UK (n = 74) and Czech Republic (n = 61). Analysis was performed using metataxonomics, ultra-performance liquid chromatography-mass spectrometry (UPLC-MS), targeted bacterial qPCR and tumour exome sequencing. Hierarchical clustering accounting for clinical and oncological covariates was performed to identify clusters of bacteria and metabolites linked to CRC. Cox proportional hazards regression was used to ascertain clusters associated with disease-free survival over median follow-up of 50 months. RESULTS: Thirteen mucosal microbiota clusters were identified, of which five were significantly different between tumour and paired normal mucosa. Cluster 7, containing the pathobionts Fusobacterium nucleatum and Granulicatella adiacens, was strongly associated with CRC (PFDR = 0.0002). Additionally, tumoral dominance of cluster 7 independently predicted favourable disease-free survival (adjusted p = 0.031). Cluster 1, containing Faecalibacterium prausnitzii and Ruminococcus gnavus, was negatively associated with cancer (PFDR = 0.0009), and abundance was independently predictive of worse disease-free survival (adjusted p = 0.0009). UPLC-MS analysis revealed two major metabolic (Met) clusters. Met 1, composed of medium chain (MCFA), long-chain (LCFA) and very long-chain (VLCFA) fatty acid species, ceramides and lysophospholipids, was negatively associated with CRC (PFDR = 2.61 × 10-11); Met 2, composed of phosphatidylcholine species, nucleosides and amino acids, was strongly associated with CRC (PFDR = 1.30 × 10-12), but metabolite clusters were not associated with disease-free survival (p = 0.358). An association was identified between Met 1 and DNA mismatch-repair deficiency (p = 0.005). FBXW7 mutations were only found in cancers predominant in microbiota cluster 7. CONCLUSIONS: Networks of pathobionts in the tumour mucosal niche are associated with tumour mutation and metabolic subtypes and predict favourable outcome following CRC resection. Video Abstract.


Subject(s)
Colorectal Neoplasms , Gastrointestinal Microbiome , Microbiota , Humans , Chromatography, Liquid , Tandem Mass Spectrometry , Microbiota/genetics , Gastrointestinal Microbiome/genetics , Colorectal Neoplasms/surgery
SELECTION OF CITATIONS
SEARCH DETAIL