ABSTRACT
RBC transfusion therapy is essential for the treatment of anemia. A serious complication of transfusion is the development of non-ABO alloantibodies to polymorphic RBC Ags; yet, mechanisms of alloantibody formation remain unclear. Storage of mouse RBCs before transfusion increases RBC immunogenicity through an unknown mechanism. We previously reported that sterile, stored mouse RBCs activate splenic dendritic cells (DCs), which are required for alloimmunization. Here we transfused mice with allogeneic RBCs to test whether stored RBCs activate pattern recognition receptors (PRRs) on recipient DCs to induce adaptive immunity. TLRs are a class of PRRs that regulate DC activation, which signal through two adapter molecules: MyD88 and TRIF. We show that the inflammatory cytokine response, DC activation and migration, and the subsequent alloantibody response to transfused RBCs require MyD88 but not TRIF, suggesting that a restricted set of PRRs are responsible for sensing RBCs and triggering alloimmunization.
Subject(s)
Adaptive Immunity , Erythrocytes/immunology , Erythrocytes/metabolism , Immunity, Innate , Myeloid Differentiation Factor 88/metabolism , Animals , Biomarkers , Erythrocyte Transfusion , Fluorescent Antibody Technique , Humans , Isoantibodies/immunology , Mice , Mice, Knockout , Mice, Transgenic , Myeloid Differentiation Factor 88/geneticsABSTRACT
OBJECTIVE: This study evaluated the effect of pregnancy on the pulmonary innate immune response in a mouse model of acute lung injury (ALI) using nebulized lipopolysaccharide (LPS). STUDY DESIGN: Pregnant (day 14) C57BL/6NCRL mice and nonpregnant controls received nebulized LPS for 15 minutes. Twenty-four hours later, mice were euthanized for tissue harvest. Analysis included blood and bronchoalveolar lavage fluid (BALF) differential cell counts, whole-lung inflammatory cytokine transcription levels by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR), and whole-lung vascular cell adhesion molecule 1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1), and BALF albumin by western blot. Mature bone marrow neutrophils from uninjured pregnant and nonpregnant mice were examined for chemotactic response using a Boyden chamber and for cytokine response to LPS by RT-qPCR. RESULTS: In LPS-induced ALI, pregnant mice had higher BALF total cell (p < 0.001) and neutrophil counts (p < 0.001) as well as higher peripheral blood neutrophils (p < 0.01) than nonpregnant mice, but a similar increase (as compared with unexposed mice) in airspace albumin levels. Whole-lung expression of interleukin 6, tumor necrosis factor-α (TNF-α), and keratinocyte chemoattractant (CXCL1) was also similar. In vitro, marrow-derived neutrophils from pregnant and nonpregnant mice had similar chemotaxis to CXCL1 and N-formylmethionine-leucyl-phenylalanine, but neutrophils from pregnant mice expressed lower levels of TNF (p < 0.001) and CXCL1 (p < 0.01) after LPS stimulation. In uninjured mice, VCAM-1 was higher in lungs from pregnant versus nonpregnant mice (p < 0.05). CONCLUSION: In this model, pregnancy is associated with an augmented lung neutrophil response to ALI without increased capillary leak or whole-lung cytokine levels relative to the nonpregnant state. This may stem from increased peripheral blood neutrophil response and intrinsically increased expression of pulmonary vascular endothelial adhesion molecules. Differences in lung innate cell homeostasis may affect the response to inflammatory stimuli and explain severe lung disease in respiratory infection during pregnancy. KEY POINTS: · Inhalation of LPS in midgestation versus virgin mice is associated with increased neutrophilia.. · This occurs without a comparative increase in cytokine expression.. · This may be explained by pregnancy-enhanced pre-exposure expression of VCAM-1 and ICAM-1..
Subject(s)
Acute Lung Injury , Lipopolysaccharides , Mice , Animals , Pregnancy , Female , Lipopolysaccharides/adverse effects , Lipopolysaccharides/metabolism , Intercellular Adhesion Molecule-1/adverse effects , Intercellular Adhesion Molecule-1/metabolism , Vascular Cell Adhesion Molecule-1/adverse effects , Vascular Cell Adhesion Molecule-1/metabolism , Mice, Inbred C57BL , Lung/metabolism , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Cytokines , Disease Models, Animal , Immunity , Neutrophils/metabolismABSTRACT
BACKGROUND: The etiology of food allergy is poorly understood; mouse models are powerful systems to discover immunologic pathways driving allergic disease. C3H/HeJ mice are a widely used model for the study of peanut allergy because, unlike C57BL/6 or BALB/c mice, they are highly susceptible to oral anaphylaxis. However, the immunologic mechanism of this strain's susceptibility is not known. OBJECTIVE: We aimed to determine the mechanism underlying the unique susceptibility to anaphylaxis in C3H/HeJ mice. We tested the role of deleterious Toll-like receptor 4 (Tlr4) or dedicator of cytokinesis 8 (Dock8) mutations in this strain because both genes have been associated with food allergy. METHODS: We generated C3H/HeJ mice with corrected Dock8 or Tlr4 alleles and sensitized and challenged them with peanut. We then characterized the antibody response to sensitization, anaphylaxis response to both oral and systemic peanut challenge, gut microbiome, and biomarkers of gut permeability. RESULTS: In contrast to C3H/HeJ mice, C57BL/6 mice were resistant to anaphylaxis after oral peanut challenge; however, both strains undergo anaphylaxis with intraperitoneal challenge. Restoring Tlr4 or Dock8 function in C3H/HeJ mice did not protect from anaphylaxis. Instead, we discovered enhanced gut permeability resulting in ingested allergens in the bloodstream in C3H/HeJ mice compared to C57BL/6 mice, which correlated with an increased number of goblet cells in the small intestine. CONCLUSIONS: Our work highlights the potential importance of gut permeability in driving anaphylaxis to ingested food allergens; it also indicates that genetic loci outside of Tlr4 and Dock8 are responsible for the oral anaphylactic susceptibility of C3H/HeJ mice.
Subject(s)
Intestinal Mucosa/metabolism , Passive Cutaneous Anaphylaxis , Peanut Hypersensitivity/metabolism , Administration, Oral , Animals , Arachis/immunology , Disease Models, Animal , Female , Gastrointestinal Microbiome , Genetic Predisposition to Disease , Guanine Nucleotide Exchange Factors/genetics , Male , Mice, Inbred C3H , Mice, Inbred C57BL , Mutation , Passive Cutaneous Anaphylaxis/genetics , Peanut Hypersensitivity/genetics , Peanut Hypersensitivity/microbiology , Permeability , Species Specificity , Toll-Like Receptor 4/geneticsABSTRACT
Studies comparing endogenous and recombinant serum amyloid A (SAA) have generated conflicting data on the proinflammatory function of these proteins. In exploring this discrepancy, we found that in contrast to commercially sourced recombinant human SAA1 (hSAA1) proteins produced in Escherichia coli, hSAA1 produced from eukaryotic cells did not promote proinflammatory cytokine production from human or mouse cells, induce Th17 differentiation, or stimulate TLR2. Proteomic analysis of E. coli-derived hSAA1 revealed the presence of numerous bacterial proteins, with several being reported or probable lipoproteins. Treatment of hSAA1 with lipoprotein lipase or addition of a lipopeptide to eukaryotic cell-derived hSAA1 inhibited or induced the production of TNF-α from macrophages, respectively. Our results suggest that a function of SAA is in the binding of TLR2-stimulating bacterial proteins, including lipoproteins, and demand that future studies of SAA employ a recombinant protein derived from eukaryotic cells.
Subject(s)
Leukocytes, Mononuclear/immunology , Serum Amyloid A Protein/immunology , Th17 Cells/immunology , Toll-Like Receptor 2/agonists , Adult , Animals , Cell Differentiation , Cytokines/metabolism , Escherichia coli/genetics , Escherichia coli Proteins/immunology , HEK293 Cells , Humans , Inflammation Mediators/metabolism , Lipoproteins/immunology , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Recombinant Proteins/genetics , Serum Amyloid A Protein/geneticsABSTRACT
Nitrogen dioxide (NO2) is an environmental air pollutant and endogenously generated oxidant that contributes to the exacerbation of respiratory disease and can function as an adjuvant to allergically sensitize to an innocuous inhaled Ag. Because uric acid has been implicated as a mediator of adjuvant activity, we sought to determine whether uric acid was elevated and participated in a mouse model of NO2-promoted allergic sensitization. We found that uric acid was increased in the airways of mice exposed to NO2 and that administration of uricase inhibited the development of OVA-driven allergic airway disease subsequent to OVA challenge, as well as the generation of OVA-specific Abs. However, uricase was itself immunogenic, inducing a uricase-specific adaptive immune response that occurred even when the enzymatic activity of uricase had been inactivated. Inhibition of the OVA-specific response was not due to the capacity of uricase to inhibit the early steps of OVA uptake or processing and presentation by dendritic cells, but occurred at a later step that blocked OVA-specific CD4(+) T cell proliferation and cytokine production. Although blocking uric acid formation by allopurinol did not affect outcomes, administration of ultra-clean human serum albumin at protein concentrations equivalent to that of uricase inhibited NO2-promoted allergic airway disease. These results indicate that, although uric acid levels are elevated in the airways of NO2-exposed mice, the powerful inhibitory effect of uricase administration on allergic sensitization is mediated more through Ag-specific immune deviation than via suppression of allergic sensitization, a mechanism to be considered in the interpretation of results from other experimental systems.
Subject(s)
Asthma/prevention & control , Hypersensitivity/immunology , Nitrogen Dioxide/toxicity , Ovalbumin/immunology , Urate Oxidase/administration & dosage , Uric Acid/metabolism , Adaptive Immunity , Allergens/administration & dosage , Allopurinol/administration & dosage , Animals , Antigen Presentation , Asthma/chemically induced , Asthma/immunology , Cytokines/biosynthesis , Cytokines/immunology , Disease Models, Animal , Humans , Lung/chemistry , Lung/immunology , Lung/pathology , Mice , Mice, Inbred BALB C , Ovalbumin/administration & dosage , Serum Albumin/administration & dosage , Th2 Cells , Urate Oxidase/metabolismABSTRACT
Immunosuppression is a major complication of alcoholism that contributes to increased rates of opportunistic infections and sepsis in alcoholics. The NLRP3 inflammasome, a multiprotein intracellular pattern recognition receptor complex that facilitates the cleavage and secretion of the proinflammatory cytokines IL-1ß and IL-18, can be inhibited by ethanol, and we sought to better understand the mechanism through which this occurs and whether chemically similar molecules exert comparable effects. We show that ethanol can specifically inhibit activation of the NLRP3 inflammasome, resulting in attenuated IL-1ß and caspase-1 cleavage and secretion, as well as diminished apoptosis-associated speck-like protein containing a CARD (ASC) speck formation, without affecting potassium efflux, in a mouse macrophage cell line (J774), mouse bone marrow-derived dendritic cells, mouse neutrophils, and human PBMCs. The inhibitory effects on the Nlrp3 inflammasome were independent of γ-aminobutyric acid A receptor activation or N-methyl-d-asparate receptor inhibition but were associated with decreased oxidant production. Ethanol treatment markedly decreased cellular tyrosine phosphorylation, whereas administration of the tyrosine phosphatase inhibitor sodium orthovanadate prior to ethanol restored tyrosine phosphorylation and IL-1ß secretion subsequent to ATP stimulation. Furthermore, sodium orthovanadate-induced phosphorylation of ASC Y144, necessary and sufficient for Nlrp3 inflammasome activation, and secretion of phosphorylated ASC were inhibited by ethanol. Finally, multiple alcohol-containing organic compounds exerted inhibitory effects on the Nlrp3 inflammasome, whereas 2-methylbutane (isopentane), the analogous alkane of the potent inhibitor isoamyl alcohol (isopentanol), did not. Our results demonstrate that ethanol antagonizes the NLRP3 inflammasome at an apical event in its activation through the stimulation of protein tyrosine phosphatases, an effect shared by other short-chain alcohols.
Subject(s)
Alcohols/toxicity , Ethanol/toxicity , Inflammasomes/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/drug effects , Protein Tyrosine Phosphatases/drug effects , Animals , Blotting, Western , Cells, Cultured , Enzyme-Linked Immunosorbent Assay , Humans , Inflammasomes/metabolism , Mice , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Protein Tyrosine Phosphatases/metabolismABSTRACT
Obese asthma presents with inherent hyperresponsiveness to methacholine or augmented allergen-driven allergic asthma, with an even greater magnitude of methacholine hyperresponsiveness. These physiologic parameters and accompanying obese asthma symptoms can be reduced by successful weight loss, yet the underlying mechanisms remain incompletely understood. We implemented mouse models of diet-induced obesity, dietary and surgical weight loss, and environmental allergen exposure to examine the mechanisms and mediators of inherent and allergic obese asthma. We report that the methacholine hyperresponsiveness in these models of inherent obese asthma and obese allergic asthma manifests in distinct anatomical compartments but that both are amenable to interventions that induce substantial weight loss. The inherent obese asthma phenotype, with characteristic increases in distal airspace tissue resistance and tissue elastance, is associated with elevated proinflammatory cytokines that are reduced with dietary weight loss. Surprisingly, bariatric surgery-induced weight loss further elevates these cytokines while reducing methacholine responsiveness to levels similar to those in lean mice or in formerly obese mice rendered lean through dietary intervention. In contrast, the obese allergic asthma phenotype, with characteristic increases in central airway resistance, is not associated with increased adaptive immune responses, yet diet-induced weight loss reduces methacholine hyperresponsiveness without altering immunological variables. Diet-induced weight loss is effective in models of both inherent and allergic obese asthma, and our examination of the fecal microbiome revealed that the obesogenic Firmicutes/Bacteroidetes ratio was normalized after diet-induced weight loss. Our results suggest that structural, immunological, and microbiological factors contribute to the manifold presentations of obese asthma.
Subject(s)
Asthma/complications , Bronchial Hyperreactivity/complications , Hypersensitivity/complications , Obesity/chemically induced , Obesity/complications , Weight Loss , Animals , Asthma/pathology , Bacteria/metabolism , Bariatric Surgery , Bronchial Hyperreactivity/pathology , Cytokines/metabolism , Diet , Disease Models, Animal , Hypersensitivity/pathology , Inflammation Mediators/metabolism , Intestines/microbiology , Intestines/pathology , Male , Methacholine Chloride , Mice, Inbred C57BL , Mice, ObeseABSTRACT
Background: Individuals with allergic asthma exhibit lung inflammation and remodeling accompanied by methacholine hyperresponsiveness manifesting in proximal airway narrowing and distal lung tissue collapsibility, and they can present with a range of mild-to-severe disease amenable or resistant to therapeutic intervention, respectively. There remains a need for alternatives or complements to existing treatments that could control the physiologic manifestations of allergic asthma. Objectives: Our aim was to examine the hypothesis that because ketone bodies elicit anti-inflammatory activity and are effective in mitigating the methacholine hyperresponsiveness associated with obese asthma, increasing systemic concentrations of ketone bodies would diminish pathologic outcomes in asthma-relevant cell types and in mouse models of allergic asthma. Methods: We explored the effects of ketone bodies on allergic asthma-relevant cell types (macrophages, airway epithelial cells, CD4 T cells, and bronchial smooth muscle cells) in vitro as well as in vivo by using preclinical models representative of several endotypes of allergic asthma to determine whether promotion of ketosis through feeding a ketogenic diet or providing a ketone precursor or a ketone ester dietary supplement could affect immune and inflammatory parameters as well as methacholine hyperresponsiveness. Results: In a dose-dependent manner, the ketone bodies acetoacetate and ß-hydroxybutyrate (BHB) decreased proinflammatory cytokine secretion from mouse macrophages and airway epithelial cells, decreased house dust mite (HDM) extract-induced IL-8 secretion from human airway epithelial cells, and decreased cytokine production from polyclonally and HDM-activated T cells. Feeding a ketogenic diet, providing a ketone body precursor, or supplementing the diet with a ketone ester increased serum BHB concentrations and decreased methacholine hyperresponsiveness in several acute HDM sensitization and challenge models of allergic asthma. A ketogenic diet or ketone ester supplementation decreased methacholine hyperresponsiveness in an HDM rechallenge model of chronic allergic asthma. Ketone ester supplementation synergized with corticosteroid treatment to decrease methacholine hyperresponsiveness in an HDM-driven model of mixed-granulocytic severe asthma. HDM-induced morphologic changes in bronchial smooth muscle cells were inhibited in a dose-dependent manner by BHB, as was HDM protease activity. Conclusions: Increasing systemic BHB concentrations through dietary interventions could provide symptom relief for several endotypes of allergic asthmatic individuals through effects on multiple asthma-relevant cells.
ABSTRACT
Dendritic cells (DCs) activated via TLR ligation experience metabolic reprogramming, in which the cells are heavily dependent on glucose and glycolysis for the synthesis of molecular building blocks essential for maturation, cytokine production, and the ability to stimulate T cells. Although the TLR-driven metabolic reprogramming events are well documented, fungal-mediated metabolic regulation via C-type lectin receptors such as Dectin-1 and Dectin-2 is not clearly understood. Here, we show that activation of DCs with fungal-associated ß-glucan ligands induces acute glycolytic reprogramming that supports the production of IL-1ß and its secretion subsequent to NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome activation. This acute glycolytic induction in response to ß-glucan ligands requires spleen tyrosine kinase signaling in a TLR-independent manner, suggesting now that different classes of innate immune receptors functionally induce conserved metabolic responses to support immune cell activation. These studies provide new insight into the complexities of metabolic regulation of DCs immune effector function regarding cellular activation associated with protection against fungal microbes.
Subject(s)
Dendritic Cells/metabolism , Interleukin-1beta/biosynthesis , Syk Kinase/metabolism , Toll-Like Receptors/metabolism , beta-Glucans/metabolism , Animals , Dendritic Cells/immunology , Glycolysis , Lectins, C-Type/metabolism , Ligands , Mice , Myeloid Differentiation Factor 88/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Syk Kinase/geneticsABSTRACT
Alcohol use disorders are common both in the United States and globally, and are associated with a variety of co-morbid, inflammation-linked diseases. The pathogenesis of many of these ailments are driven by the activation of the NLRP3 inflammasome, a multi-protein intracellular pattern recognition receptor complex that facilitates the cleavage and secretion of the pro-inflammatory cytokines IL-1ß and IL-18. We hypothesized that protracted exposure of leukocytes to ethanol would amplify inflammasome activation, which would help to implicate mechanisms involved in diseases associated with both alcoholism and aberrant NLRP3 inflammasome activation. Here we show that long-term ethanol exposure of human peripheral blood mononuclear cells and a mouse macrophage cell line (J774) amplifies IL-1ß secretion following stimulation with NLRP3 agonists, but not with AIM2 or NLRP1b agonists. The augmented NRLP3 activation was mediated by increases in iNOS expression and NO production, in conjunction with increases in mitochondrial membrane depolarization, oxygen consumption rate, and ROS generation in J774 cells chronically exposed to ethanol (CE cells), effects that could be inhibited by the iNOS inhibitor SEITU, the NO scavenger carboxy-PTIO, and the mitochondrial ROS scavenger MitoQ. Chronic ethanol exposure did not alter K+ efflux or Zn2+ homeostasis in CE cells, although it did result in a lower intracellular concentration of NAD+. Prolonged administration of acetaldehyde, the product of alcohol dehydrogenase (ADH) mediated metabolism of ethanol, mimicked chronic ethanol exposure, whereas ADH inhibition prevented ethanol-induced IL-1ß hypersecretion. Together, these results indicate that increases in iNOS and mitochondrial ROS production are critical for chronic ethanol-induced IL-1ß hypersecretion, and that protracted exposure to the products of ethanol metabolism are probable mediators of NLRP3 inflammasome hyperactivation.
Subject(s)
Ethanol/pharmacology , Interleukin-1beta/metabolism , Mitochondria/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Reactive Oxygen Species/metabolism , Animals , Cell Line , Gene Expression Regulation/drug effects , Humans , Inflammasomes/metabolism , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology , Macrophages/drug effects , Macrophages/immunology , Mice , Mitochondria/metabolismABSTRACT
Airway epithelial NF-κB activation is observed in asthmatic subjects and is a cause of airway inflammation in mouse models of allergic asthma. Combination therapy with inhaled short-acting ß2-agonists and corticosteroids significantly improves lung function and reduces inflammation in asthmatic subjects. Corticosteroids operate through a number of mechanisms to potently inhibit NF-κB activity. Since ß2-agonists can induce expression of 11ß-HSD1, which converts inactive 11-keto corticosteroids into active 11-hydroxy corticosteroids, thereby potentiating the effects of endogenous glucocorticoids, we examined whether this mechanism is involved in the inhibition of NF-κB activation induced by the ß-agonist albuterol in airway epithelial cells. Treatment of transformed murine Club cells (MTCC) with (R)-albuterol (levalbuterol), but not with (S)- or a mixture of (R + S)- (racemic) albuterol, augmented mRNA expression of 11ß-HSD1. MTCC were stably transfected with luciferase (luc) reporter constructs under transcriptional regulation by NF-κB (NF-κB/luc) or glucocorticoid response element (GRE/luc) consensus motifs. Stimulation of NF-κB/luc MTCC with lipopolysaccharide (LPS) or tumor necrosis factor-α (TNFα) induced luc activity, which was inhibited by pretreatment with (R)-, but not (S)- or racemic albuterol. Furthermore, pretreatment of GRE/luc MTCC with (R)-, but not with (S)- or racemic albuterol, augmented 11-keto corticosteroid (cortisone) induced luc activity, which was diminished by the 11ß-HSD inhibitor glycyrrhetinic acid (18ß-GA), indicating that there was a conversion of inactive 11-keto to active 11-hydroxy corticosteroids. LPS- and TNFα-induced NF-κB/luc activity was diminished in MTCC cells treated with a combination of cortisone and (R)-albuterol, an effect that was inhibited by 18ß-GA. Finally, pretreatment of MTCC cells with the combination of cortisone and (R)-albuterol diminished LPS- and TNFα-induced pro-inflammatory cytokine production to an extent similar to that of dexamethasone. These results demonstrate that levalbuterol augments expression of 11ß-HSD1 in airway epithelial cells, reducing LPS-induced NF-κB transcriptional activity and pro-inflammatory cytokine production through the conversion of inactive 11-keto corticosteroids into the active 11-hydroxy form in this cell type.