Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Anesth Analg ; 138(5): 1107-1119, 2024 May 01.
Article in English | MEDLINE | ID: mdl-37390022

ABSTRACT

BACKGROUND: Paclitaxel (PTX), which is a first-line chemotherapy drug used to treat various types of cancers, exhibits peripheral neuropathy as a common side effect that is difficult to treat. Protein arginine methyltransferase 5 (PRMT 5) is a key regulator of the chemotherapy response, as chemotherapy drugs induce PRMT5 expression. However, little is known about the PRMT5-mediated epigenetic mechanisms involved in PTX-induced neuropathic allodynia. METHODS: Sprague-Dawley rats were intraperitoneally given PTX to induce neuropathic pain. Biochemical analyses were conducted to measure the protein expression levels in the dorsal root ganglion (DRG) of the animals. The von Frey test and hot plate test were used to evaluate nociceptive behaviors. RESULTS: PTX increased the PRMT5 (mean difference [MD]: 0.68, 95% confidence interval [CI], 0.88-0.48; P < .001 for vehicle)-mediated deposition of histone H3R2 dimethyl symmetric (H3R2me2s) at the transient receptor potential vanilloid 1 ( Trpv1 ) promoter in the DRG. PRMT5-induced H3R2me2s recruited WD repeat domain 5 (WDR5) to increase trimethylation of lysine 4 on histone H3 (H3K4me3) at Trpv1 promoters, thus resulting in TRPV1 transcriptional activation (MD: 0.65, 95% CI, 0.82-0.49; P < .001 for vehicle) in DRG in PTX-induced neuropathic pain. Moreover, PTX increased the activity of NADPH oxidase 4 (NOX4) (MD: 0.66, 95% CI, 0.81-0.51; P < .001 for vehicle), PRMT5-induced H3R2me2s, and WDR5-mediated H3K4me3 in the DRG in PTX-induced neuropathic pain. Pharmacological antagonism and the selective knockdown of PRMT5 in DRG neurons completely blocked PRMT5-mediated H3R2me2s, WDR5-mediated H3K4me3, or TRPV1 expression and neuropathic pain development after PTX injection. Remarkably, NOX4 inhibition not only attenuated allodynia behavior and reversed the above-mentioned signaling but also reversed NOX4 upregulation via PTX. CONCLUSIONS: Thus, the NOX4/PRMT5-associated epigenetic mechanism in DRG has a dominant function in the transcriptional activation of TRPV1 in PTX-induced neuropathic pain.


Subject(s)
Antineoplastic Agents , Neuralgia , Rats , Animals , Paclitaxel/toxicity , Paclitaxel/metabolism , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/pharmacology , Rats, Sprague-Dawley , Hyperalgesia/chemically induced , Hyperalgesia/genetics , Hyperalgesia/metabolism , Ganglia, Spinal , TRPV Cation Channels/genetics , Antineoplastic Agents/adverse effects , Neuralgia/chemically induced , Neuralgia/genetics , Neuralgia/metabolism , Epigenesis, Genetic
2.
Int J Neuropsychopharmacol ; 26(7): 483-495, 2023 07 31.
Article in English | MEDLINE | ID: mdl-37279653

ABSTRACT

BACKGROUND: BTRX-246040, a nociceptin/orphanin FQ peptide receptor antagonist, is being developed for the treatment of depressive patients. However, the underlying mechanism of this potential antidepressant is still largely unclear. Here, we studied the antidepressant-related actions of BTRX-246040 in the ventrolateral periaqueductal gray (vlPAG). METHODS: The tail suspension test, forced swim test, female urine sniffing test, sucrose preference test, and learned helplessness (LH) combined with pharmacological approaches were employed to examine the antidepressant-like effects and drug effects on LH-induced depressive-like behavior in C57BL/6J mice. Electrophysiological recordings in vlPAG neurons were used to study synaptic activity. RESULTS: Intraperitoneal administration of BTRX-246040 produced antidepressant-like behavioral effects in a dose-dependent manner. Systemic BTRX-246040 (10 mg/kg) resulted in an increased frequency and amplitude of miniature excitatory postsynaptic currents (EPSCs) in the vlPAG. Moreover, slice perfusion of BTRX-246040 directly elevated the frequency and amplitude of miniature EPSCs and enhanced the evoked EPSCs in the vlPAG, which were blocked by pretreatment with the nociceptin/orphanin FQ peptide receptor agonist Ro 64-6198. In addition, intra-vlPAG application of BTRX-246040 produced antidepressant-like behavioral effects in a dose-dependent manner. Moreover, intra-vlPAG pretreatment with 6-cyano-7-nitroquinoxaline-2,3-dione reversed both systemic and local BTRX-246040-mediated antidepressant-like behavioral effects. Furthermore, both systemic and local BTRX-246040 decreased the LH phenotype and reduced LH-induced depressive-like behavior. CONCLUSIONS: The results suggested that BTRX-246040 may act through the vlPAG to exert antidepressant-relevant actions. The present study provides new insight into a vlPAG-dependent mechanism underlying the antidepressant-like actions of BTRX-246040.


Subject(s)
Neurons , Periaqueductal Gray , Mice , Female , Animals , Mice, Inbred C57BL , Antidepressive Agents/pharmacology , Receptors, Peptide
3.
Anesthesiology ; 138(6): 634-655, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36867667

ABSTRACT

BACKGROUND: Nonsense-mediated messenger RNA (mRNA) decay increases targeted mRNA degradation and has been implicated in the regulation of gene expression in neurons. The authors hypothesized that nonsense-mediated µ-opioid receptor mRNA decay in the spinal cord is involved in the development of neuropathic allodynia-like behavior in rats. METHODS: Adult Sprague-Dawley rats of both sexes received spinal nerve ligation to induce neuropathic allodynia-like behavior. The mRNA and protein expression contents in the dorsal horn of animals were measured by biochemical analyses. Nociceptive behaviors were evaluated by the von Frey test and the burrow test. RESULTS: On Day 7, spinal nerve ligation significantly increased phosphorylated upstream frameshift 1 (UPF1) expression in the dorsal horn (mean ± SD; 0.34 ± 0.19 in the sham ipsilateral group vs. 0.88 ± 0.15 in the nerve ligation ipsilateral group; P < 0.001; data in arbitrary units) and drove allodynia-like behaviors in rats (10.58 ± 1.72 g in the sham ipsilateral group vs. 1.19 ± 0.31 g in the nerve ligation ipsilateral group, P < 0.001). No sex-based differences were found in either Western blotting or behavior tests in rats. Eukaryotic translation initiation factor 4A3 (eIF4A3) triggered SMG1 kinase (0.06 ± 0.02 in the sham group vs. 0.20 ± 0.08 in the nerve ligation group, P = 0.005, data in arbitrary units)-mediated UPF1 phosphorylation, leading to increased nonsense-mediated mRNA decay factor SMG7 binding and µ-opioid receptor mRNA degradation (0.87 ± 0.11-fold in the sham group vs. 0.50 ± 0.11-fold in the nerve ligation group, P = 0.002) in the dorsal horn of the spinal cord after spinal nerve ligation. Pharmacologic or genetic inhibition of this signaling pathway in vivo ameliorated allodynia-like behaviors after spinal nerve ligation. CONCLUSIONS: This study suggests that phosphorylated UPF1-dependent nonsense-mediated µ-opioid receptor mRNA decay is involved in the pathogenesis of neuropathic pain.


Subject(s)
Hyperalgesia , Neuralgia , Male , Female , Rats , Animals , Hyperalgesia/metabolism , Rats, Sprague-Dawley , Nonsense Mediated mRNA Decay , Spinal Cord/metabolism , Spinal Nerves , Neuralgia/metabolism , Spinal Cord Dorsal Horn , Receptors, Opioid , Ligation/adverse effects
4.
Anesth Analg ; 137(6): 1289-1301, 2023 12 01.
Article in English | MEDLINE | ID: mdl-36753440

ABSTRACT

BACKGROUND: The microtubule-stabilizing drug paclitaxel (PTX) is an important chemotherapeutic agent for cancer treatment and causes peripheral neuropathy as a common side effect that substantially impacts the functional status and quality of life of patients. The mechanistic role for NIMA-related kinase 2 (NEK2) in the progression of PTX-induced neuropathic pain has not been established. METHODS: Adult male Sprague-Dawley rats intraperitoneally received PTX to induce neuropathic pain. The protein expression levels in the dorsal root ganglion (DRG) of animals were measured by biochemical analyses. Nociceptive behaviors were evaluated by von Frey tests and hot plate tests. RESULTS: PTX increased phosphorylation of the important microtubule dynamics regulator NEK2 in DRG neurons and induced profound neuropathic allodynia. PTX-activated phosphorylated NEK2 (pNEK2) increased jumonji domain-containing 3 (JMJD3) protein, a histone demethylase protein, to specifically catalyze the demethylation of the repressive histone mark H3 lysine 27 trimethylation (H3K27me3) at the Trpv1 gene, thereby enhancing transient receptor potential vanilloid subtype-1 (TRPV1) expression in DRG neurons. Moreover, the pNEK2-dependent PTX response program is regulated by enhancing p90 ribosomal S6 kinase 2 (RSK2) phosphorylation. Conversely, intrathecal injections of kaempferol (a selective RSK2 activation antagonist), NCL 00017509 (a selective NEK2 inhibitor), NEK2-targeted siRNA, GSK-J4 (a selective JMJD3 inhibitor), or capsazepine (an antagonist of TRPV1 receptor) into PTX-treated rats reversed neuropathic allodynia and restored silencing of the Trpv1 gene, suggesting the hierarchy and interaction among phosphorylated RSK2 (pRSK2), pNEK2, JMJD3, H3K27me3, and TRPV1 in the DRG neurons in PTX-induced neuropathic pain. CONCLUSIONS: pRSK2/JMJD3/H3K27me3/TRPV1 signaling in the DRG neurons plays as a key regulator for PTX therapeutic approaches.


Subject(s)
Antineoplastic Agents , Neuralgia , Humans , Rats , Male , Animals , Paclitaxel/adverse effects , Paclitaxel/metabolism , Hyperalgesia/chemically induced , Hyperalgesia/genetics , Rats, Sprague-Dawley , Ganglia, Spinal , Phosphates/adverse effects , Phosphates/metabolism , Histones/metabolism , Quality of Life , TRPV Cation Channels , Neuralgia/chemically induced , Neuralgia/genetics , Neuralgia/metabolism , Antineoplastic Agents/adverse effects , Neurons/metabolism , Epigenesis, Genetic , NIMA-Related Kinases/genetics , NIMA-Related Kinases/metabolism
5.
Int J Mol Sci ; 23(13)2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35806377

ABSTRACT

Vitamin D has been described as an essential nutrient and hormone, which can cause nuclear, non-genomic, and mitochondrial effects. Vitamin D not only controls the transcription of thousands of genes, directly or indirectly through the modulation of calcium fluxes, but it also influences the cell metabolism and maintenance specific nuclear programs. Given its broad spectrum of activity and multiple molecular targets, a deficiency of vitamin D can be involved in many pathologies. Vitamin D deficiency also influences mortality and multiple outcomes in chronic kidney disease (CKD). Active and native vitamin D serum levels are also decreased in critically ill patients and are associated with acute kidney injury (AKI) and in-hospital mortality. In addition to regulating calcium and phosphate homeostasis, vitamin D-related mechanisms regulate adaptive and innate immunity. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections have a role in excessive proinflammatory cell recruitment and cytokine release, which contribute to alveolar and full-body endothelial damage. AKI is one of the most common extrapulmonary manifestations of severe coronavirus disease 2019 (COVID-19). There are also some correlations between the vitamin D level and COVID-19 severity via several pathways. Proper vitamin D supplementation may be an attractive therapeutic strategy for AKI and has the benefits of low cost and low risk of toxicity and side effects.


Subject(s)
Acute Kidney Injury , COVID-19 Drug Treatment , COVID-19 , Vitamin D Deficiency , Acute Kidney Injury/drug therapy , Acute Kidney Injury/etiology , COVID-19/complications , Calcium , Humans , SARS-CoV-2 , Vitamin D/metabolism , Vitamin D/therapeutic use , Vitamin D Deficiency/complications , Vitamin D Deficiency/drug therapy , Vitamins/therapeutic use
6.
Neurourol Urodyn ; 39(5): 1304-1312, 2020 06.
Article in English | MEDLINE | ID: mdl-32293055

ABSTRACT

AIMS: Though the pressure-volume analysis (PVA), a method based on thermodynamics, is broadly used for assaying cardiac functions, its potential application on the physiology/pathophysiology of the urinary bladder, which processes resemble thermodynamic cycles to the heart, has not been established. METHODS: Cystometry recording intravesical pressure (IVP) and intravesical volume (IVV) of rhythmic voiding contractions caused by a constant saline infusion (0.04 mL/min) were carried out in forty urethane-anesthetized female Sprague-Dawley rats, and the PVA was established by plotting IVP against IVV. RESULTS: Pressure-volume points shaped coincident enclosed loops, and loop-associated urodynamic parameters kept stable under a constant infusion rate (0.04 mL/min). Enhancing preload (by elevating infusion rates to 0.08 and 0.12 mL/min) increased the area enclosed by the loop (Apv) and shifted loops to the right and slightly upward. Augmenting afterload (by enhancing resistances using 1/4 and 1/2 urethra clamping) increased Apv and shifted loops markedly to the right and upward. Without affecting Apv, muscarine (0.01 and 0.1 mM)-induced inotropic states shifted loop to the left and upward that was as opposed to the atropine (0.01 and 0.1 mM)-induced anti-inotropic state. CONCLUSIONS: Not only consistently assayed baseline bladder functions, PVA but also validly measured modified bladder functions due to altered extrinsic environment and intrinsic contractility of the bladder itself. In accompanied by cystometry, PVA could provide a clear concept about the relationship between time, pressure, and volume in the voiding activity.


Subject(s)
Urethra/physiology , Urinary Bladder/physiology , Urination/physiology , Urodynamics/physiology , Animals , Female , Muscle Contraction/physiology , Rats , Rats, Sprague-Dawley
7.
J Neurosci ; 38(43): 9160-9174, 2018 10 24.
Article in English | MEDLINE | ID: mdl-30201771

ABSTRACT

To date, histone H2B monoubiquitination (H2Bub), a mark associated with transcriptional elongation and ongoing transcription, has not been linked to the development or maintenance of neuropathic pain states. Here, using male Sprague Dawley rats, we demonstrated spinal nerve ligation (SNL) induced behavioral allodynia and provoked ring finger protein 20 (RNF20)-dependent H2Bub in dorsal horn. Moreover, SNL provoked RNF20-mediated H2Bub phosphorylated RNA polymerase II (RNAPII) in the promoter fragments of mGluR5, thereby enhancing mGluR5 transcription/expression in the dorsal horn. Conversely, focal knockdown of spinal RNF20 expression reversed not only SNL-induced allodynia but also RNF20/H2Bub/RNAPII phosphorylation-associated spinal mGluR5 transcription/expression. Notably, TNF-α injection into naive rats and specific neutralizing antibody injection into SNL-induced allodynia rats revealed that TNF-α-associated allodynia involves the RNF20/H2Bub/RNAPII transcriptional axis to upregulate mGluR5 expression in the dorsal horn. Collectively, our findings indicated TNF-α induces RNF20-drived H2B monoubiquitination, which facilitates phosphorylated RNAPII-dependent mGluR5 transcription in the dorsal horn for the development of neuropathic allodynia.SIGNIFICANCE STATEMENT Histone H2B monoubiquitination (H2Bub), an epigenetic post-translational modification, positively correlated with gene expression. Here, TNF-α participated in neuropathic pain development by enhancing RNF20-mediated H2Bub, which facilitates phosphorylated RNAPII-dependent mGluR5 transcription in dorsal horn. Our finding potentially identified neuropathic allodynia pathophysiological processes underpinning abnormal nociception processing and opens a new avenue for the development of novel analgesics.


Subject(s)
Histones/metabolism , Neuralgia/metabolism , Posterior Horn Cells/metabolism , Receptor, Metabotropic Glutamate 5/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination/physiology , Animals , Histones/genetics , Male , Neuralgia/chemically induced , Neuralgia/genetics , Posterior Horn Cells/drug effects , Rats , Rats, Sprague-Dawley , Receptor, Metabotropic Glutamate 5/genetics , Transcription, Genetic/drug effects , Transcription, Genetic/physiology , Tumor Necrosis Factor-alpha/toxicity , Ubiquitin-Protein Ligases/genetics , Ubiquitination/drug effects
8.
Int J Mol Sci ; 20(17)2019 Aug 26.
Article in English | MEDLINE | ID: mdl-31454988

ABSTRACT

Diverse transcriptional controls in the dorsal horn have been observed in pain hypersensitivity. However, the understanding of the exact causes and mechanisms of neuropathic pain development is still fragmentary. Here, the results demonstrated nerve injury decreased the expression of spinal hairy and enhancer of split 1 (Hes1), a transcriptional repressor, and enhanced metabotropic glutamate receptor subtype 5 (mGluR5) transcription/expression, which was accompanied with behavioral allodynia. Moreover, nerve injury decreased Hes1 levels and reciprocally increased cyclin dependent kinase-9 (CDK9) levels and recruited CDK9 to phosphorylate RNA polymerase II (RNAPII) in the promoter fragments of mGluR5, thereby enhancing mGluR5 transcription/expression in the dorsal horn. These effects were also induced by intrathecally administering naïve rats with Hes1 small interfering RNA (siRNA). Conversely, Hes1 overexpression using intrathecal lentiviral vectors in nerve injury rats produced reversal of pain behavior and reversed protein expressions, phosphorylation, and coupling to the promoter segments in the dorsal horn. Collectively, the results in this study indicated nerve injury diminishes spinal Hes1-dependent suppression of CDK9-dependent RNAPII phosphorylation on the mGluR5 promoter that possibly enhances mGluR5 transcription/expression for neuropathic pain development.


Subject(s)
Cyclin-Dependent Kinase 9/metabolism , Neuralgia/etiology , Neuralgia/metabolism , RNA Polymerase II/metabolism , Receptor, Metabotropic Glutamate 5/genetics , Spinal Cord/metabolism , Transcription Factor HES-1/genetics , Animals , Behavior, Animal , Disease Models, Animal , Gene Expression , Gene Expression Regulation , Gene Knockdown Techniques , Hyperalgesia/etiology , Hyperalgesia/metabolism , Male , Phenotype , Promoter Regions, Genetic , Protein Binding , Rats , Spinal Cord/physiopathology , Transcription Factor HES-1/metabolism , Transcription Factors/metabolism , Transcription, Genetic
9.
J Neurosci ; 36(37): 9722-38, 2016 09 14.
Article in English | MEDLINE | ID: mdl-27629721

ABSTRACT

UNLABELLED: Spinal plasticity, a key process mediating neuropathic pain development, requires ubiquitination-dependent protein turnover. Presynaptic active zone proteins have a crucial role in regulating vesicle exocytosis, which is essential for synaptic plasticity. Nevertheless, the mechanism for ubiquitination-regulated turnover of presynaptic active zone proteins in the progression of spinal plasticity-associated neuropathic pain remains unclear. Here, after research involving Sprague Dawley rats, we reported that spinal nerve ligation (SNL), in addition to causing allodynia, enhances the Rab3-interactive molecule-1α (RIM1α), a major active zone protein presumed to regulate neural plasticity, specifically in the synaptic plasma membranes (SPMs) of the ipsilateral dorsal horn. Spinal RIM1α-associated allodynia was mediated by Fbxo3, which abates Fbxl2-dependent RIM1α ubiquitination. Subsequently, following deubiquitination, enhanced RIM1α directly binds to CaV2.2, resulting in increased CaV2.2 expression in the SPMs of the dorsal horn. While exhibiting no effect on Fbxo3/Fbxl2 signaling, the focal knockdown of spinal RIM1α expression reversed the SNL-induced allodynia and increased spontaneous EPSC (sEPSC) frequency by suppressing RIM1α-facilitated CaV2.2 expression in the dorsal horn. Intrathecal applications of BC-1215 (a Fbxo3 activity inhibitor), Fbxl2 mRNA-targeting small-interfering RNA, and ω-conotoxin GVIA (a CaV2.2 blocker) attenuated RIM1α upregulation, enhanced RIM1α expression, and exhibited no effect on RIM1α expression, respectively. These results confirm the prediction that spinal presynaptic Fbxo3-dependent Fbxl2 ubiquitination promotes the subsequent RIM1α/CaV2.2 cascade in SNL-induced neuropathic pain. Our findings identify a role of the presynaptic active zone protein in pain-associated plasticity. That is, RIM1α-facilitated CaV2.2 expression plays a role in the downstream signaling of Fbxo3-dependent Fbxl2 ubiquitination/degradation to promote spinal plasticity underlying the progression of nociceptive hypersensitivity following neuropathic injury. SIGNIFICANCE STATEMENT: Ubiquitination is a well known process required for protein degradation. Studies investigating pain pathology have demonstrated that ubiquitination contributes to chronic pain by regulating the turnover of synaptic proteins. Here, we found that the spinal presynaptic active zone protein Rab3-interactive molecule-1α (RIM1α) participates in neuropathic pain development by binding to and upregulating the expression of CaV2.2. In addition, Fbxo3 modifies this pathway by inhibiting Fbxl2-mediated RIM1α ubiquitination, suggesting that presynaptic protein ubiquitination makes a crucial contribution to the development of neuropathic pain. Research in this area, now in its infancy, could potentially provide a novel therapeutic strategy for pain relief.


Subject(s)
Calcium Channels, N-Type/metabolism , F-Box Proteins/metabolism , Hyperalgesia/metabolism , rab3 GTP-Binding Proteins/metabolism , Action Potentials/physiology , Animals , Benzylamines/pharmacology , Calcium Channel Blockers/pharmacology , Disease Models, Animal , F-Box Proteins/antagonists & inhibitors , Gene Expression Regulation/drug effects , Hyperalgesia/etiology , Male , Neuralgia/complications , Neurons/physiology , Pain Measurement , Pyridines/pharmacology , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Spinal Cord Dorsal Horn/drug effects , Spinal Cord Dorsal Horn/metabolism , Spinal Nerves/cytology , Spinal Nerves/injuries , Spinal Nerves/metabolism , Ubiquitination/drug effects , Ubiquitination/physiology , omega-Conotoxin GVIA/pharmacology
10.
Anesthesiology ; 127(5): 862-877, 2017 11.
Article in English | MEDLINE | ID: mdl-28806224

ABSTRACT

BACKGROUND: Bromodomain-containing protein 4 binds acetylated promoter histones and promotes transcription; however, the role of bromodomain-containing protein 4 in inflammatory hyperalgesia remains unclear. METHODS: Male Sprague-Dawley rats received hind paw injections of complete Freund's adjuvant to induce hyperalgesia. The dorsal root ganglia were examined to detect changes in bromodomain-containing protein 4 expression and the activation of genes involved in the expression of voltage-gated sodium channel 1.7, which is a key pain-related ion channel. RESULTS: The intraplantar complete Freund's adjuvant injections resulted in thermal hyperalgesia (4.0 ± 1.5 s; n = 7). The immunohistochemistry and immunoblotting results demonstrated an increase in the bromodomain-containing protein 4-expressing dorsal root ganglia neurons (3.78 ± 0.38 fold; n = 7) and bromodomain-containing protein 4 protein levels (2.62 ± 0.39 fold; n = 6). After the complete Freund's adjuvant injection, histone H3 protein acetylation was enhanced in the voltage-gated sodium channel 1.7 promoter, and cyclin-dependent kinase 9 and phosphorylation of RNA polymerase II were recruited to this area. Furthermore, the voltage-gated sodium channel 1.7-mediated currents were enhanced in neurons of the complete Freund's adjuvant rats (55 ± 11 vs. 19 ± 9 pA/pF; n = 4 to 6 neurons). Using bromodomain-containing protein 4-targeted antisense small interfering RNA to the complete Freund's adjuvant-treated rats, the authors demonstrated a reduction in the expression of bromodomain-containing protein 4 (0.68 ± 0.16 fold; n = 7), a reduction in thermal hyperalgesia (7.5 ± 1.5 s; n = 7), and a reduction in the increased voltage-gated sodium channel 1.7 currents (21 ± 4 pA/pF; n = 4 to 6 neurons). CONCLUSIONS: Complete Freund's adjuvant triggers enhanced bromodomain-containing protein 4 expression, ultimately leading to the enhanced excitability of nociceptive neurons and thermal hyperalgesia. This effect is likely mediated by the enhanced expression of voltage-gated sodium channel 1.7.


Subject(s)
Ganglia, Spinal/metabolism , Hyperalgesia/metabolism , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Neurons/metabolism , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Transcription, Genetic/physiology , Animals , Ganglia, Spinal/pathology , Hot Temperature/adverse effects , Hyperalgesia/genetics , Hyperalgesia/pathology , Male , NAV1.7 Voltage-Gated Sodium Channel/genetics , Neurons/pathology , Nuclear Proteins/genetics , Rats , Rats, Sprague-Dawley , Transcription Factors/genetics
11.
Anesthesiology ; 126(6): 1077-1095, 2017 06.
Article in English | MEDLINE | ID: mdl-28346321

ABSTRACT

BACKGROUND: Growth arrest and DNA-damage-inducible protein 45ß reactivates methylation-silenced neural plasticity-associated genes through DNA demethylation. However, growth arrest and DNA-damage-inducible protein 45ß-dependent demethylation contributes to neuropathic allodynia-associated spinal plasticity remains unclear. METHODS: Adult male Sprague-Dawley rats (654 out of 659) received a spinal nerve ligation or a sham operation with or without intrathecal application of one of the following: growth arrest and DNA-damage-inducible protein 45ß messenger RNA-targeted small interfering RNA, lentiviral vector expressing growth arrest and DNA-damage-inducible protein 45ß, Ro 25-6981 (an NR2B-bearing N-methyl-D-aspartate receptor antagonist), or KN-93 (a calmodulin-dependent protein kinase II antagonist) were used for behavioral measurements, Western blotting, immunofluorescence, dot blots, detection of unmodified cytosine enrichment at cytosine-phosphate-guanine site, chromatin immunoprecipitation quantitative polymerase chain reaction analysis, and slice recordings. RESULTS: Nerve ligation-enhanced growth arrest and DNA-damage-inducible protein 45ß expression (n = 6) in ipsilateral dorsal horn neurons accompanied with behavioral allodynia (n = 7). Focal knockdown of growth arrest and DNA-damage-inducible protein 45ß expression attenuated ligation-induced allodynia (n = 7) by reducing the binding of growth arrest and DNA-damage-inducible protein 45ß to the voltage-dependent T-type calcium channel 3.2 subunit promoter (n = 6) that decreased expression of and current mediated by the voltage-dependent T-type calcium channel 3.2 subunit (both n = 6). In addition, NR2B-bearing N-methyl-D-aspartate receptors and calmodulin-dependent protein kinase II act in an upstream cascade to increase growth arrest and DNA-damage-inducible protein 45ß expression, hence enhancing demethylation at the voltage-dependent T-type calcium channel 3.2 subunit promoter and up-regulating voltage-dependent T-type calcium channel 3.2 subunit expression. Intrathecal administration of Ro 25-6981, KN-93, or a growth arrest and DNA-damage-inducible protein 45ß-targeting small interfering RNA (n = 6) reversed the ligation-induced enrichment of unmodified cytosine at the voltage-dependent T-type calcium channel 3.2 subunit promoter by increasing the associated 5-formylcytosine and 5-carboxylcytosine levels. CONCLUSIONS: By converting 5-formylcytosine or 5-carboxylcytosine to unmodified cytosine, the NR2B-bearing N-methyl-D-aspartate receptor, calmodulin-dependent protein kinase II, or growth arrest and DNA-damage-inducible protein 45ß pathway facilitates voltage-dependent T-type calcium channel 3.2 subunit gene demethylation to mediate neuropathic allodynia.


Subject(s)
Antigens, Differentiation/metabolism , Calcium Channels, T-Type/metabolism , DNA Methylation , Hyperalgesia/metabolism , Neuralgia/metabolism , Spinal Nerves/injuries , Animals , Antigens, Differentiation/genetics , Blotting, Western , Calcium Channels, T-Type/genetics , Disease Models, Animal , Fluorescent Antibody Technique , Hyperalgesia/genetics , Male , Neuralgia/genetics , Polymerase Chain Reaction , Rats , Rats, Sprague-Dawley , Spinal Nerves/metabolism
12.
J Pineal Res ; 63(4)2017 Nov.
Article in English | MEDLINE | ID: mdl-28718992

ABSTRACT

Melatonin (N-acetyl-5-methoxytryptamine)/MT2 receptor-dependent epigenetic modification represents a novel pathway in the treatment of neuropathic pain. Because spinal ten-eleven translocation methylcytosine dioxygenase 1 (Tet1)-dependent epigenetic demethylation has recently been linked to pain hypersensitivity, we hypothesized that melatonin/MT2-dependent analgesia involves spinal Tet1-dependent demethylation. Here, we showed that spinal Tet1 gene transfer by intrathecal delivery of Tet1-encoding vectors to naïve rats produced profound and long-lasting nociceptive hypersensitivity. In addition, enhanced Tet1 expression, Tet1-metabotropic glutamate receptor subtype 5 (mGluR5) promoter coupling, demethylation at the mGluR5 promoter, and mGluR5 expression in dorsal horn neurons were observed. Rats subjected to spinal nerve ligation and intraplantar complete Freund's adjuvant injection displayed tactile allodynia and behavioral hyperalgesia associated with similar changes in the dorsal horn. Notably, intrathecal melatonin injection reversed the protein expression, protein-promoter coupling, promoter demethylation, and pain hypersensitivity induced by Tet1 gene transfer, spinal nerve ligation, and intraplantar complete Freund's adjuvant injection. All the effects caused by melatonin were blocked by pretreatment with a MT2 receptor-selective antagonist. In conclusion, melatonin relieves pain by impeding Tet1-dependent demethylation of mGluR5 in dorsal horn neurons through the MT2 receptor. Our findings link melatonin/MT2 signaling to Tet1-dependent epigenetic demethylation of nociceptive genes for the first time and suggest melatonin as a promising therapy for the treatment of pain.


Subject(s)
Analgesics/pharmacology , DNA Methylation/drug effects , Dioxygenases/metabolism , Melatonin/pharmacology , Neuralgia/metabolism , Receptor, Metabotropic Glutamate 5/metabolism , Animals , Demethylation/drug effects , Hyperalgesia/metabolism , Male , Promoter Regions, Genetic , Rats , Rats, Sprague-Dawley
13.
J Neurosci ; 35(50): 16545-60, 2015 Dec 16.
Article in English | MEDLINE | ID: mdl-26674878

ABSTRACT

Emerging evidence has indicated that the pathogenesis of neuropathic pain is mediated by spinal neural plasticity in the dorsal horn, which provides insight for analgesic therapy. Here, we report that the abundance of tumor necrosis factor receptor-associated factor 2 and NcK-interacting kinase (TNIK), a kinase that is presumed to regulate neural plasticity, was specifically enhanced in ipsilateral dorsal horn neurons after spinal nerve ligation (SNL; left L5 and L6). Spinal TNIK-associated allodynia is mediated by downstream TNIK-GluR1 coupling and the subsequent phosphorylation-dependent trafficking of GluR1 toward the plasma membrane in dorsal horn neurons. Tumor necrosis factor receptor-associated factor 2 (TRAF2), which is regulated by spinal F-box protein 3 (Fbxo3)-dependent F-box and leucine-rich repeat protein 2 (Fbxl2) ubiquitination, contributes to SNL-induced allodynia by modifying TNIK/GluR1 phosphorylation-associated GluR1 trafficking. Although exhibiting no effect on Fbxo3/Fbxl2/TRAF2 signaling, focal knockdown of spinal TNIK expression prevented SNL-induced allodynia by attenuating TNIK/GluR1 phosphorylation-dependent subcellular GluR1 redistribution. In contrast, intrathecal administration of BC-1215 (N1,N2-Bis[[4-(2-pyridinyl)phenyl]methyl]-1,2-ethanediamine) (a novel Fbxo3 inhibitor) prevented SNL-induced Fbxl2 ubiquitination and subsequent TFAF2 de-ubiquitination to ameliorate behavioral allodynia via antagonizing TRAF2/TNIK/GluR1 signaling. By targeting spinal Fbxo3-dependent Fbxl2 ubiquitination and the subsequent TRAF2/TNIK/GluR1 cascade, spinal application of a TNF-α-neutralizing antibody ameliorated SNL-induced allodynia, and, conversely, intrathecal TNF-α injection into naive rats induced allodynia via a spinal Fbxo3/Fbxl2-dependent modification of the TRAF2/TNIK/GluR1 cascade. Together, our results suggest that spinal TNF-α contributes to the development of neuropathic pain by upregulating TRAF2/TNIK/GluR1 signaling via Fbxo3-dependent Fbxl2 ubiquitination and degradation. Thus, we propose a potential medical treatment strategy for neuropathic pain by targeting the F-box protein or TNIK. SIGNIFICANCE STATEMENT: TNF-α participates in neuropathic pain development by facilitating the spinal TRAF2-dependent TNIK-GluR1 association, which drives GluR1-containing AMPA receptor trafficking toward the plasma membrane. In addition, F-box protein 3 modifies this pathway by inhibiting F-box and leucine-rich repeat protein 2-mediated TRAF2 ubiquitination, suggesting that protein ubiquitination contributes crucially to the development of neuropathic pain. These results provide a novel therapeutic strategy for pain relief.


Subject(s)
F-Box Proteins/genetics , F-Box Proteins/physiology , Hyperalgesia/genetics , Hyperalgesia/physiopathology , Peripheral Nervous System Diseases/genetics , Peripheral Nervous System Diseases/physiopathology , Protein Serine-Threonine Kinases/genetics , Receptors, AMPA/genetics , Ubiquitination/genetics , Animals , Antibodies, Neutralizing/pharmacology , Benzylamines/pharmacology , Gene Knockdown Techniques , Male , Posterior Horn Cells/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyridines/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, AMPA/antagonists & inhibitors , Signal Transduction/drug effects , Signal Transduction/genetics , Spinal Nerves/injuries , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/pharmacology , Ubiquitination/drug effects
14.
J Neurosci ; 35(44): 14943-55, 2015 Nov 04.
Article in English | MEDLINE | ID: mdl-26538661

ABSTRACT

Retromer, which crucially contributes to endosomal sorting machinery through the retrieval and recycling of signaling receptors away from degradation, has been identified as a critical element for glutamatergic-receptor-dependent neural plasticity at excitatory synapses. We observed it accompanied by behavioral allodynia; neuropathic injury time-dependently enhanced VPS26A and SNX27 expression; VPS26A-SNX27 coprecipitation; and VPS26A-positive, SNX27-positive, and VPS26A-SNX27 double-labeled immunoreactivity in the dorsal horn of Sprague Dawley rats that were all sufficiently ameliorated through the focal knock-down of spinal VPS26A expression. Although the knock-down of spinal SNX27 expression exhibited similar effects, spinal nerve ligation (SNL)-enhanced VPS26A expression remained unaffected. Moreover, SNL also increased membrane-bound and total mGluR5 abundance, VPS26A-bound SNX27 and mGluR5 and mGluR5-bound VPS26A and SNX27 coprecipitation, and mGluR5-positive and VPS26A/SNX27/mGluR5 triple-labeled immunoreactivity in the dorsal horn, and these effects were all attenuated through the focal knock-down of spinal VPS26A and SNX27 expression. Although administration with MPEP adequately ameliorated SNL-associated allodynia, mGluR5 expression, and membrane insertion, SNL-enhanced VPS26A and SNX27 expression were unaffected. Together, these results suggested a role of spinal VPS26A-SNX27-dependent mGluR5 recycling in the development of neuropathic pain. This is the first study that links retromer-associated sorting machinery with the spinal plasticity underlying pain hypersensitivity and proposes the possible pathophysiological relevance of endocytic recycling in pain pathophysiology through the modification of glutamatergic mGluR5 recycling. SIGNIFICANCE STATEMENT: VPS26A-SNX27-dependent mGluR5 recycling plays a role in the development of neuropathic pain. The regulation of the VPS26A-SNX27 interaction that modifies mGluR5 trafficking and expression in the dorsal horn provides a novel therapeutic strategy for pain relief.


Subject(s)
Nerve Tissue Proteins/metabolism , Neuralgia/metabolism , Posterior Horn Cells/metabolism , Receptor, Metabotropic Glutamate 5/metabolism , Vesicular Transport Proteins/metabolism , Animals , Male , Neuralgia/pathology , Pain Measurement/methods , Posterior Horn Cells/pathology , Protein Binding/physiology , Rats , Rats, Sprague-Dawley
15.
J Pineal Res ; 60(3): 263-76, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26732138

ABSTRACT

Melatonin (MLT; N-acetyl-5-methoxytryptamine) exhibits analgesic properties in chronic pain conditions. While researches linking MLT to epigenetic mechanisms have grown exponentially over recent years, very few studies have investigated the contribution of MLT-associated epigenetic modification to pain states. Here, we report that together with behavioral allodynia, spinal nerve ligation (SNL) induced a decrease in the expression of catalytic subunit of phosphatase 2A (PP2Ac) and enhanced histone deacetylase 4 (HDAC4) phosphorylation and cytoplasmic accumulation, which epigenetically alleviated HDAC4-suppressed hmgb1 gene transcription, resulting in increased high-mobility group protein B1 (HMGB1) expression selectively in the ipsilateral dorsal horn of rats. Focal knock-down of spinal PP2Ac expression also resulted in behavioral allodynia in association with similar protein expression as observed with SNL. Notably, intrathecal administration with MLT increased PP2Ac expression, HDAC4 dephosphorylation and nuclear accumulation, restored HDAC4-mediated hmgb1 suppression and relieved SNL-sensitized behavioral pain; these effects were all inhibited by spinal injection of 4P-PDOT (a MT2 receptor antagonist, 30 minutes before MLT) and okadaic acid (OA, a PP2A inhibitor, 3 hr after MLT). Our findings demonstrate a novel mechanism by which MLT ameliorates neuropathic allodynia via epigenetic modification. This MLT-exhibited anti-allodynia is mediated by MT2-enhanced PP2Ac expression that couples PP2Ac with HDAC4 to induce HDAC4 dephosphorylation and nuclear import, herein increases HDAC4 binding to the promoter of hmgb1 gene and upregulates HMGB1 expression in dorsal horn neurons.


Subject(s)
Histone Deacetylases/metabolism , Hyperalgesia/metabolism , Matrix Metalloproteinase 15/metabolism , Melatonin/pharmacology , Protein Phosphatase 2/metabolism , Spinal Cord Dorsal Horn/metabolism , Transcription, Genetic/drug effects , Animals , HMGB1 Protein/biosynthesis , Hyperalgesia/pathology , Male , Rats , Spinal Cord Dorsal Horn/pathology
16.
Anesth Analg ; 122(3): 871-881, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26720617

ABSTRACT

BACKGROUND: The elusiveness of pain mechanisms is a major impediment in developing effective clinical treatments. We examined whether the signal regulatory protein α1 (SIRPα1)-activated spinal Src homology-2 domain-containing protein tyrosine phosphatase 2 (SHP2)/Src cascade and the downstream GluN2B phosphorylation play a role in inflammatory pain. METHODS: At hour 3 and days 1, 3, 5, and 10 after the intraplantar injection of complete Freund adjuvant (CFA), we assessed paw withdrawal latency using the Hargreaves test and analyzed dorsal horn samples (L4-L5) by Western blotting and immunoprecipitation. RESULTS: Intraplantar CFA injection provoked the behavioral hyperalgesia in the ipsilateral hind-paw along with SIRPα1, phosphorylated SHP2 (pSHP2), phosphorylated Src (pSrc), and phosphorylated GluN2B expressions and total SHP2 (tSHP2)-SIRPα1/pSHP2/pSrc and total Src (tSrc)-SIRPα1/pSHP2/pSrc coprecipitation in the ipsilateral dorsal horn. Although both of them failed to show an effect on CFA-enhanced SIRPα1 expression, spinal administration with SIRPα1-neutralizing antibody (10, 50, and 100 µg, 10 µL) and 8-Hydroxy-7-[(6-sulfo-2-naphthyl)azo]-5-quinolinesulfonic acid (NSC 8787; an SHP2 antagonist, 1, 10, and 100 µM, 10 µL) dose-dependently attenuated the behavioral hyperalgesia, SHP2 and Src phosphorylation, and tSHP2-SIRPα1/pSHP2/pSrc coprecipitation at day 1 after CFA injection. Intrathecal application of 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2; a Src-family kinase inhibitor, 10, 30, and 50 nM, 10 µL) exhibited a similar effect as these agents, except that it failed to ameliorate CFA-enhanced SHP2 phosphorylation and tSHP2-SIRPα1/pSHP2 coprecipitation. CONCLUSIONS: CFA-induced spinal SIRPα1 expression, which triggers SHP2, and Src phosphorylation, which subsequently induced pSrc-GluN2B interaction to mediate the GluN2B activation, contribute to spinal plasticity underlying the maintenance of inflammatory pain. These findings provide a possible strategy for pain relief by targeting to spinal SIRPα1-SHP2 coupling.


Subject(s)
Genes, src/genetics , Inflammation/physiopathology , Pain/physiopathology , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Receptors, Immunologic/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Antibodies, Neutralizing/pharmacology , Behavior, Animal/drug effects , Enzyme Inhibitors/pharmacology , Freund's Adjuvant , Hyperalgesia/genetics , Hyperalgesia/metabolism , Hyperalgesia/psychology , Inflammation/chemically induced , Injections, Spinal , Male , Pain/chemically induced , Phosphorylation , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Rats , Rats, Sprague-Dawley , Receptors, Immunologic/genetics , Receptors, N-Methyl-D-Aspartate/genetics , Signal Transduction
17.
Anesthesiology ; 123(4): 909-26, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26263430

ABSTRACT

BACKGROUND: Neuroligin-1 (NL1) forms a complex with the presynaptic neurexin-1ß (Nrx1b), regulating clustering of N-methyl-D-aspartate receptors with postsynaptic density-95 (PSD-95) to underlie learning-/memory-associated plasticity. Pain-related spinal neuroplasticity shares several common features with learning-/memory-associated plasticity. The authors thereby investigated the potential involvement of NL1-related mechanism in spinal nerve ligation (SNL)-associated allodynia. METHODS: In 626 adult male Sprague-Dawley rats, the withdrawal threshold and NL1, PSD-95, phosphorylated NR2B (pNR2B) expressions, interactions, and locations in dorsal horn (L4 to L5) were compared between the sham operation and SNL groups. A recombinant Nrx1b Fc chimera (Nrx1b Fc, 10 µg, 10 µl, i.t., bolus), antisense small-interfering RNA targeting to NL1 (10 µg, 10 µl, i.t., daily for 4 days), or NR2B antagonist (Ro 25-6981; 1 µM, 10 µl, i.t., bolus) were administered to SNL animals to elucidate possible cascades involved. RESULTS: SNL-induced allodynia failed to affect NL1 or PSD-95 expression. However, pNR2B expression (mean ± SD from 13.1 ± 2.87 to 23.1 ± 2.52, n = 6) and coexpression of NL1-PSD-95, pNR2B-PSD-95, and NL1-total NR2B were enhanced by SNL (from 10.7 ± 2.27 to 22.2 ± 3.94, 11.5 ± 2.15 to 23.8 ± 3.32, and 8.9 ± 1.83 to 14.9 ± 2.27 at day 7, n = 6). Furthermore, neuron-localized pNR2B PSD-95-pNR2B double-labeled and NL1/PSD-95/pNR2B triple-labeled immunofluorescence in the ipsilateral dorsal horn was all prevented by Nrx1b Fc and NL1-targeted small-interfering RNA designed to block and prevent NL1 expression. Without affecting NL1-PSD-95 coupling, Ro 25-6981 decreased the SNL-induced PSD-95-pNR2B coprecipitation (from 18.7 ± 1.80 to 14.7 ± 2.36 at day 7, n = 6). CONCLUSION: SNL-induced allodynia, which is mediated by the spinal NL1/PSD-95/pNR2B cascade, can be prevented by blockade of transsynaptic Nrx1b-NL1 interactions.


Subject(s)
Cell Adhesion Molecules, Neuronal/biosynthesis , Hyperalgesia/metabolism , Intracellular Signaling Peptides and Proteins/biosynthesis , Membrane Proteins/biosynthesis , Nerve Tissue Proteins/biosynthesis , Neuralgia/metabolism , Receptors, N-Methyl-D-Aspartate/biosynthesis , Animals , Disks Large Homolog 4 Protein , Hyperalgesia/pathology , Male , Neuralgia/pathology , Rats , Rats, Sprague-Dawley , Signal Transduction/physiology , Spinal Cord/metabolism , Spinal Cord/pathology , Spinal Nerves/injuries
18.
Anesthesiology ; 123(1): 199-212, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25871743

ABSTRACT

BACKGROUND: The histone deacetylases (HDACs) have been implicated in pain hypersensitivity. This study investigated the potential involvement of an HDAC4-related mechanism in the spinal nerve ligation (SNL)-induced nociceptive hypersensitivity. METHODS: The left L5 to L6 spinal nerves of 627 adult male Sprague-Dawley rats were surgically ligated. The withdrawal threshold of hind paws and the abundances, cellular location, and interactions of proteins in the dorsal horn were assayed before and after surgery. The 14-3-3ß-targeting small-interfering RNA, a serum- and glucocorticoid-inducible kinase 1 (SGK1) antagonist, or an HDAC inhibitor was spinally injected to elucidate the role of 14-3-3ß, SGK1, and HDAC4. RESULTS: Without affecting the HDAC4 level, SNL provoked SGK1 phosphorylation (mean ± SEM from 0.24 ± 0.02 to 0.78 ± 0.06 at day 7, n = 6), HDAC4 phosphorylation (from 0.38 ± 0.03 to 0.72 ± 0.06 at day 7, n = 6), 14-3-3ß expression (from 0.53 ± 0.09 to 0.88 ± 0.09 at day 7, n = 6), cytoplasmic HDAC4 retention (from 1.18 ± 0.16 to 1.92 ± 0.11 at day 7, n = 6), and HDAC4-14-3-3ß coupling (approximately 2.4-fold) in the ipsilateral dorsal horn in association with behavioral allodynia. Knockdown of spinal 14-3-3ß expression prevented the SNL-provoked HDAC4 retention (from 1.89 ± 0.15 to 1.32 ± 0.08 at day 7, n = 6), HDAC4-14-3-3ß coupling (approximately 0.6-fold above SNL 7D), and behavioral allodynia (from 0.16 ± 0.3 to 6 ± 1.78 at day 7, n = 7), but not SGK1 (from 0.78 ± 0.06 to 0.71 ± 0.04 at day 7, n = 6) or HDAC4 (from 0.75 ± 0.15 to 0.68 ± 0.11 at day 7, n = 6) phosphorylation. CONCLUSION: Neuropathic pain maintenance involves the spinal SGK1 activation-dependent HDAC4 phosphorylation and its subsequent association with 14-3-3ß that promotes cytoplasmic HDAC4 retention in dorsal horn neurons.


Subject(s)
Cytoplasm/metabolism , Histone Deacetylases/metabolism , Neuralgia/metabolism , Posterior Horn Cells/metabolism , Spinal Nerves/injuries , Spinal Nerves/metabolism , Animals , Male , Neuralgia/pathology , Posterior Horn Cells/pathology , Rats , Rats, Sprague-Dawley , Spinal Nerves/pathology
19.
J Neurosci ; 33(12): 5227-40, 2013 Mar 20.
Article in English | MEDLINE | ID: mdl-23516288

ABSTRACT

The coupling of the spinal postsynaptic density-95 (PSD-95) with the glutamatergic N-methyl-d-aspartate receptor NR2B subunit and the subsequent NR2B phosphorylation contribute to pain-related plasticity. Increasing evidence reveals that kalirin, a Rho-guanine nucleotide exchange factor, modulates PSD-95-NR2B-dependent neuroplasticity. Our laboratory recently demonstrated that serum-inducible and glucocorticoid-inducible kinase 1 (SGK1) participates in inflammation-associated pain hypersensitivity by modulating spinal glutamatergic neurotransmission. Because kalirin is one of the proteins in PSD that is highly phosphorylated by various kinases, we tested whether kalirin could be a downstream target of spinal SGK1 that participates in neuropathic pain development via regulation of the PSD-95-NR2B coupling-dependent phosphorylation of NR2B. We observed that spinal nerve ligation (SNL, L5) in male Sprague Dawley rats resulted in behavioral allodynia, which was associated with phosphorylated SGK1 (pSGK1), kalirin, and phosphorylated NR2B (pNR2B) expression and an increase in pSGK1-kalirin-PSD-95-pNR2B coprecipitation in the ipsilateral dorsal horn (L4-L5). SNL-enhanced kalirin immunofluorescence was coincident with pSGK1, PSD-95, and pNR2B immunoreactivity. Small-interfering RNA (siRNA) that targeted spinal kalirin mRNA expression (10 µg, 10 µl; i.t.) reduced SNL-induced allodynia, kalirin and pNR2B expression, as well as kalirin-PSD-95 and PSD-95-pNR2B coupling and costaining without affecting SGK1 phosphorylation. Daily administration of GSK-650394 (an SGK1 antagonist; 100 nm, 10 µl, i.t.) not only exhibited effects similar to the kalirin mRNA-targeting siRNA but also attenuated pSGK1-kalirin costaining and SGK1-kalirin coupling. We suggest that nerve injury could induce spinal SGK1 phosphorylation that subsequently interacts with and upregulates kalirin to participate in neuropathic pain development via PSD-95-NR2B coupling-dependent NR2B phosphorylation.


Subject(s)
Guanine Nucleotide Exchange Factors/metabolism , Immediate-Early Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Neuralgia/metabolism , Protein Serine-Threonine Kinases/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Benzoates/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Disks Large Homolog 4 Protein , Guanine Nucleotide Exchange Factors/genetics , Hyperalgesia/metabolism , Hyperalgesia/physiopathology , Immediate-Early Proteins/antagonists & inhibitors , Ligation , Male , Neuralgia/physiopathology , Neuronal Plasticity/physiology , Peripheral Nerve Injuries/metabolism , Peripheral Nerve Injuries/physiopathology , Phosphorylation/physiology , Posterior Horn Cells/metabolism , Posterior Horn Cells/physiology , Protein Serine-Threonine Kinases/antagonists & inhibitors , RNA, Small Interfering/genetics , Rats , Rats, Sprague-Dawley , Spinal Nerves/metabolism , Spinal Nerves/physiopathology , Synapses/metabolism
20.
Anesthesiology ; 120(2): 436-46, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23941865

ABSTRACT

BACKGROUND: Patients with inflammatory gynecological/obstetrical problems often complain of irritable bowel syndrome. The authors examined whether acute uterus irritation reflexively provokes colonic motility in rat preparations. METHODS: A modified colon manometry and striated abdominal muscle electromyogram activity in response to mustard oil (MO) instillation into the uterine horn were continuously recorded in anesthetized rats. The lumbosacral (L6-S1) dorsal horn was dissected to assess the level and the cellular location of phosphorylated NR2B subunit using Western blotting and immunofluorescence analysis, respectively. Finally, the uterine transient receptor potential A1 or spinal NR2B subunit was pharmacologically blocked to elucidate its roles. RESULTS: MO (0.1%, 0.2 ml) injected into the lower uterine horn dramatically provoked colonic hypermotility characterized by rhythmic colonic contractions (about 3-4 contractions per 10 min, n = 7) accompanied by synchronized electromyogram firing in the abdominal muscle (about 4-5 folds of control, n = 7). In addition to provoking colonic hypermotility, MO administration also up-regulated phosphorylated (about 2-3 folds of control, n = 7), but not total, NR2B expression in the dorsal horn neurons. Both intrathecal Ro 25-6981 (a selective NR2B subunit antagonist; 10 µM, 10 µl) and intrauterine HC-030031 (a selective transient receptor potential A1 receptor antagonist; 30 mg/kg, 0.2 ml) injected before the MO instillation attenuated the MO-induced colonic hypermotility and spinal NR2B phosphorylation. CONCLUSION: The comorbidity of gynecological/obstetrical and gastrointestinal problems is not coincidental but rather causal in nature, and clinicians should investigate for gynecological/urological diseases in the setting of bowel problems with no known pathological etiology.


Subject(s)
Colon/physiopathology , Gastrointestinal Motility/physiology , Receptors, N-Methyl-D-Aspartate/physiology , Spinal Cord/physiology , TRPC Cation Channels/physiology , Uterine Diseases/physiopathology , Uterus/physiology , Acetanilides/pharmacology , Acetic Acid , Animals , Blood Proteins/metabolism , Blotting, Western , Colon/drug effects , Dose-Response Relationship, Drug , Electromyography , Excitatory Amino Acid Antagonists/pharmacology , Female , Fluorescent Antibody Technique , Gastrointestinal Motility/drug effects , Ghrelin/metabolism , Irritants , Mustard Plant , Phenols/pharmacology , Phosphorylation , Piperidines/pharmacology , Plant Oils , Posterior Horn Cells/drug effects , Pressure , Purines/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , TRPA1 Cation Channel , TRPC Cation Channels/antagonists & inhibitors , Uterine Diseases/chemically induced
SELECTION OF CITATIONS
SEARCH DETAIL