Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Part Fibre Toxicol ; 18(1): 11, 2021 03 11.
Article in English | MEDLINE | ID: mdl-33706759

ABSTRACT

BACKGROUND: Air pollution exposure and idiopathic pulmonary fibrosis (IPF) cause a poor prognosis after SARS-CoV-2 infection, but the underlying mechanisms are not well explored. Angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) are the keys to the entry of SARS-CoV-2. We therefore hypothesized that air pollution exposure and IPF may increase the expression of ACE2 and TMPRSS2 in the lung alveolar region. We measured their expression levels in lung tissues of control non-IPF and IPF patients, and used murine animal models to study the deterioration of IPF caused by particulate matter (PM) and the molecular pathways involved in the expression of ACE2 and TMPRSS2. RESULTS: In non-IPF patients, cells expressing ACE2 and TMPRSS2 were limited to human alveolar cells. ACE2 and TMPRSS2 were largely upregulated in IPF patients, and were co-expressed by fibroblast specific protein 1 (FSP-1) + lung fibroblasts in human pulmonary fibrotic tissue. In animal models, PM exposure increased the severity of bleomycin-induced pulmonary fibrosis. ACE2 and TMPRSS2 were also expressed in FSP-1+ lung fibroblasts in bleomycin-induced pulmonary fibrosis, and when combined with PM exposure, they were further upregulated. The severity of pulmonary fibrosis and the expression of ACE2 and TMPRSS2 caused by PM exposure were blocked by deletion of KC, a murine homologue of IL-8, or treatment with reparixin, an inhibitor of IL-8 receptors CXCR1/2. CONCLUSIONS: These data suggested that risk of SARS-CoV-2 infection and COVID-19 disease severity increased by air pollution exposure and underlying IPF. It can be mediated through upregulating ACE2 and TMPRSS2 in pulmonary fibroblasts, and prevented by blocking the IL-8/CXCR1/2 pathway.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/etiology , Idiopathic Pulmonary Fibrosis/complications , Particulate Matter/toxicity , SARS-CoV-2 , Serine Endopeptidases/genetics , Angiotensin-Converting Enzyme 2/physiology , Animals , Humans , Interleukin-8/physiology , Male , Mice , Mice, Inbred C57BL , Pulmonary Alveoli/enzymology , Serine Endopeptidases/physiology , Up-Regulation
2.
J Biomed Sci ; 27(1): 5, 2020 Jan 13.
Article in English | MEDLINE | ID: mdl-31928533

ABSTRACT

BACKGROUND: Recent advancements in cancer biology field suggest that glucose metabolism is a potential target for cancer treatment. However, little if anything is known about the metabolic profile of cancer stem cells (CSCs) and the related underlying mechanisms. METHODS: The metabolic phenotype in lung CSC was first investigated. The role of collagen XVII, a putative stem cell or CSC candidate marker, in regulating metabolic reprogramming in lung CSC was subsequently studied. Through screening the genes involved in glycolysis, we identified the downstream targets of collagen XVII that were involved in metabolic reprogramming of lung CSCs. Collagen XVII and its downstream targets were then used to predict the prognosis of lung cancer patients. RESULTS: We showed that an aberrant upregulation of glycolysis and oxidative phosphorylation in lung CSCs is associated with the maintenance of CSC-like features, since blocking glycolysis and oxidative phosphorylation reduces sphere formation, chemoresistance, and tumorigenicity. We also showed that the Oct4-hexokinase 2 (HK2) pathway activated by collagen XVII-laminin-332 through FAK-PI3K/AKT-GSB3ß/ß-catenin activation induced the upregulation of glycolysis and maintenance of CSC-like features. Finally, we showed that collagen XVII, Oct4, and HK2 could be valuable markers to predict the prognosis of lung cancer patients. CONCULSIONS: These data suggest the Oct4-HK2 pathway regulated by collagen XVII plays an important role in metabolic reprogramming and maintenance of CSC-like features in lung CSCs, which may aid in the development of new strategies in cancer treatment.


Subject(s)
Autoantigens/biosynthesis , Cellular Reprogramming , Gene Expression Regulation, Neoplastic , Lung Neoplasms/metabolism , Neoplasm Proteins/biosynthesis , Neoplastic Stem Cells/metabolism , Non-Fibrillar Collagens/biosynthesis , Pluripotent Stem Cells/metabolism , Signal Transduction , A549 Cells , HT29 Cells , Humans , Lung Neoplasms/pathology , Neoplastic Stem Cells/pathology , Pluripotent Stem Cells/pathology , Collagen Type XVII
3.
Int J Cancer ; 145(8): 2144-2156, 2019 10 15.
Article in English | MEDLINE | ID: mdl-30920655

ABSTRACT

Tumor progression with chemoresistance and local recurrence is commonly happened during treatment of esophageal squamous cell carcinoma (ESCC). Cancer stem cells (CSC) may respond for tumor progression. However, there are few reports regarding metabolism of esophageal CSCs with clinical correlation. In this work, we demonstrated that ESCC cell lines in spheroid culture display CSC phenotypes, including increased ALDH activity, chemoresistance and tumor initiation, which are dependent on Hsp27 activation. Esophageal CSCs also exhibit reprogrammed metabolic features particularly higher glycolysis and oxidative phosphorylation, which are regulated via the Hsp27-AKT-HK2 pathway. Moreover, HK2 is required for maintenance of CSC phenotypes. Inhibition of CSC metabolism reduces cell growth and tumor formation. Clinically, patients who underwent surgical resection for esophageal cancer, and displayed overexpression of both Hsp27 and HK2, had the worst prognosis of all expression types. In conclusion, stem cells features and aberrant metabolic reprogramming of esophageal CSCs depend on the Hsp27-AKT-HK2 pathway. Targeting Hsp27 and HK2 could be novel therapeutic strategy for treating esophageal cancer and warrants further investigation.


Subject(s)
Carcinoma, Squamous Cell/metabolism , Esophageal Neoplasms/metabolism , Heat-Shock Proteins/metabolism , Hexokinase/metabolism , Molecular Chaperones/metabolism , Neoplastic Stem Cells/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Deoxyglucose/pharmacology , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Gene Expression Regulation, Neoplastic/drug effects , Glycolysis/drug effects , Hexokinase/genetics , Humans , Kaplan-Meier Estimate , Metformin/pharmacology , Oxidative Phosphorylation/drug effects , Signal Transduction/drug effects , Signal Transduction/genetics
4.
Int J Mol Sci ; 21(1)2019 Dec 28.
Article in English | MEDLINE | ID: mdl-31905700

ABSTRACT

BACKGROUND: Although particular matter (PM) increases incidence and severity of idiopathic pulmonary fibrosis, the underlying mechanism remains elusive. METHODS: The effects of PM were evaluated in a murine model of bleomycin-induced pulmonary fibrosis. Mice were divided into four groups, receiving: (1) Saline (control), (2) bleomycin, (3) PM, or (4) bleomycin plus PM (Bleo+PM). Additional groups of Bleo+PM mice were treated with sivelestat (an inhibitor of neutrophil elastase) or reparixin (a C-X-C motif chemokine receptor 2 antagonist), or were genetically modified with keratinocyte chemoattractant (KC) deletion. RESULTS: Pulmonary fibrosis was not observed in the control or PM groups. Bleomycin induced pulmonary fibrosis within 14 days. The Bleo+PM group showed worse pulmonary fibrosis when compared to the bleomycin group. Analyses of immune cell profile and chemokine/cytokine concentrations at day 2-bronchoalveolar lavage fluid (BALF) revealed that the Bleo+PM group had increased neutrophil number and elastase level and KC concentration compared to the bleomycin group. Neutrophil elastase activated the Smad2/Smad3/α-SMA pathway to induce collagen deposition, while sivelestat abrogated the increased severity of pulmonary fibrosis caused by PM. Chemotaxis assay revealed that BALF of the Bleo+PM group recruited neutrophil, which was dependent on KC. Further, genetic KC deletion or pharmaceutical inhibition of KC binding to CXCR2 with reparixin ameliorated the PM-induced increased severity of pulmonary fibrosis. CONCLUSIONS: These data provide evidence that the PM-induced increased severity of pulmonary fibrosis depends on KC-mediated neutrophil chemotaxis and give additional mechanic insight that will aid in the development of therapeutic strategies.


Subject(s)
Chemokine CXCL1/metabolism , Chemotaxis , Neutrophils/drug effects , Particulate Matter/toxicity , Pulmonary Fibrosis/etiology , Actins/genetics , Actins/metabolism , Animals , Bleomycin/toxicity , Cells, Cultured , Chemokine CXCL1/genetics , Collagen/genetics , Collagen/metabolism , Glycine/analogs & derivatives , Glycine/pharmacology , Humans , Male , Mice , Mice, Inbred C57BL , Neutrophils/metabolism , Neutrophils/physiology , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Smad Proteins/genetics , Smad Proteins/metabolism , Sulfonamides/pharmacology
5.
Oncotarget ; 9(2): 1656-1672, 2018 Jan 05.
Article in English | MEDLINE | ID: mdl-29416721

ABSTRACT

Epithelial-to-mesenchymal transition (EMT) is associated with tumor metastasis and tumorigenesis in lung cancer stem-like cells (CSCs). However, the exact mechanism underlying this is not clear. We used microarray analysis to identify candidate genes responsible for EMT in spheroid and monolayer cultures of lung cancer cells. We found increased expression of a variety of adhesion molecules in CSCs. One of these molecules, Collagen XVII (Col XVII), was demonstrated to be required for maintenance of EMT phenotypes and metastasis ability in lung CSCs. We showed that Col XVII stabilized laminin-5 to activate the FAK/AKT/GSK3ß pathway, thereby suppressing Snail ubiquitination-degradation. The function of Col XVII was mainly dependent on shedding by ADAM9 and ADAM10. Patients who underwent surgical resection for lung cancer, and displayed overexpression of both Col XVII and laminin-5, had the worst prognosis of all expression types. Moreover, blockage of the Col XVII/laminin-5 pathway reduced the EMT phenotypes of lung CSCs in vitro and decreased the potential of lung metastasis in vivo. Our findings suggested that targeting Col XVII and laminin-5 could be novel therapeutic strategies for treating lung cancer patients, and warrant further investigation.

6.
Sci Rep ; 7(1): 14272, 2017 10 27.
Article in English | MEDLINE | ID: mdl-29079731

ABSTRACT

Pulmonary fibrosis is characterized by fibroblast proliferation and extracellular matrix remodelling, leading to respiratory insufficiency. The mechanisms underlying this progressive and devastating disease remain unclear. Conditions that can impair the function of the endoplasmic reticulum (ER) cause accumulation of unfolded or misfolded proteins, resulting in ER stress and activation of the unfolded protein response (UPR). ER stress has been implicated in many conditions including cancer, diabetes, obesity, and inflammation. It is also involved in lung fibrosis, through myofibroblastic differentiation of fibroblasts; however, the precise role of ER stress in lung fibrosis is unknown. The current study aimed to investigate the underlying mechanisms of ER stress inhibitors in the treatment of bleomycin-induced lung fibrosis. We demonstrated that bleomycin can activate ER stress associated proteins, including GRP78, CHOP, and ATF-4, both in vitro and in vivo. PI3K/AKT acts upstream of ER stress to affect lung fibroblast proliferation, resulting in bleomycin-induced pulmonary fibrosis. Treatment with ER stress inhibitors or a PI3K inhibitor caused a reduction in fibroblast proliferation and improved pulmonary function. The relationship between PI3K/AKT/mTOR and ER stress in pulmonary fibrosis, and the application of PI3K inhibitors and ER stress inhibitors in the treatment of pulmonary fibrosis require further investigation.


Subject(s)
Bleomycin/pharmacology , Endoplasmic Reticulum Stress/drug effects , Fibroblasts/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/pathology , Activating Transcription Factor 4/metabolism , Animals , Cell Line , Endoplasmic Reticulum Chaperone BiP , Enzyme Activation/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Heat-Shock Proteins/metabolism , Lung/pathology , Mice , Pulmonary Fibrosis/metabolism , Transcription Factor CHOP/metabolism , Unfolded Protein Response/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL