Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Mol Cell ; 78(3): 382-395.e8, 2020 05 07.
Article in English | MEDLINE | ID: mdl-32183942

ABSTRACT

N6-Methyldeoxyadenosine (6mA) has recently been shown to exist and play regulatory roles in eukaryotic genomic DNA (gDNA). However, the biological functions of 6mA in mammals have yet to be adequately explored, largely due to its low abundance in most mammalian genomes. Here, we report that mammalian mitochondrial DNA (mtDNA) is enriched for 6mA. The level of 6mA in HepG2 mtDNA is at least 1,300-fold higher than that in gDNA under normal growth conditions, corresponding to approximately four 6mA modifications on each mtDNA molecule. METTL4, a putative mammalian methyltransferase, can mediate mtDNA 6mA methylation, which contributes to attenuated mtDNA transcription and a reduced mtDNA copy number. Mechanistically, the presence of 6mA could repress DNA binding and bending by mitochondrial transcription factor (TFAM). Under hypoxia, the 6mA level in mtDNA could be further elevated, suggesting regulatory roles for 6mA in mitochondrial stress response. Our study reveals DNA 6mA as a regulatory mark in mammalian mtDNA.


Subject(s)
DNA, Mitochondrial/metabolism , Deoxyadenosines/metabolism , Methyltransferases/metabolism , Animals , DNA Methylation , DNA, Mitochondrial/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Deoxyadenosines/genetics , Gene Expression Regulation , Hep G2 Cells , Humans , Hypoxia/genetics , Methyltransferases/genetics , Mice, Inbred C57BL , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
2.
Nucleic Acids Res ; 52(1): 154-165, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-37986225

ABSTRACT

Asymmetric cell division (ACD) is a mechanism used by stem cells to maintain the number of progeny. However, the epigenetic mechanisms regulating ACD remain elusive. Here we show that BRD4, a BET domain protein that binds to acetylated histone, is segregated in daughter cells together with H3K56Ac and regulates ACD. ITGB1 is regulated by BRD4 to regulate ACD. A long noncoding RNA (lncRNA), LIBR (LncRNA Inhibiting BRD4), decreases the percentage of stem cells going through ACD through interacting with the BRD4 mRNAs. LIBR inhibits the translation of BRD4 through recruiting a translation repressor, RCK, and inhibiting the binding of BRD4 mRNAs to polysomes. These results identify the epigenetic regulatory modules (BRD4, lncRNA LIBR) that regulate ACD. The regulation of ACD by BRD4 suggests the therapeutic limitation of using BRD4 inhibitors to treat cancer due to the ability of these inhibitors to promote symmetric cell division that may lead to tumor progression and treatment resistance.


Subject(s)
Bromodomain Containing Proteins , Cell Division , Epigenesis, Genetic , RNA, Long Noncoding , Asymmetric Cell Division , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Bromodomain Containing Proteins/metabolism
3.
Cancer Cell Int ; 23(1): 266, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37941005

ABSTRACT

BACKGROUND: The hypoxia-responsive long non-coding RNA, RP11-367G18.1, has recently been reported to induce histone 4 lysine 16 acetylation (H4K16Ac) through its variant 2; however, the underlying molecular mechanism remains poorly understood. METHODS: RNA pull-down assay and liquid chromatography-tandem mass spectrometry were performed to identify RP11-367G18.1 variant 2-binding partner. The molecular events were examined utilizing western blot analysis, real-time PCR, luciferase reporter assay, chromatin immunoprecipitation, and chromatin isolation by RNA purification assays. The migration, invasion, soft agar colony formation, and in vivo xenograft experiments were conducted to evaluate the impact of RP11-367G18.1 variant 2-YY1 complex on tumor progression. RESULTS: In this study, RNA sequencing data revealed that hypoxia and RP11-367G18.1 variant 2 co-regulated genes were enriched in tumor-related pathways. YY1 was identified as an RP11-367G18.1 variant 2-binding partner that activates the H4K16Ac mark. YY1 was upregulated under hypoxic conditions and served as a target gene for hypoxia-inducible factor-1α. RP11-367G18.1 variant 2 colocalized with YY1 and H4K16Ac in the nucleus under hypoxic conditions. Head and neck cancer tissues had higher levels of RP11-367G18.1 and YY1 which were associated with poor patient outcomes. RP11-367G18.1 variant 2-YY1 complex contributes to hypoxia-induced epithelial-mesenchymal transition, cell migration, invasion, and tumorigenicity. YY1 regulated hypoxia-induced genes dependent on RP11-367G18.1 variant 2. CONCLUSIONS: RP11-367G18.1 variant 2-YY1 complex mediates the tumor-promoting effects of hypoxia, suggesting that this complex can be targeted as a novel therapeutic strategy for cancer treatment.

4.
Int J Mol Sci ; 23(10)2022 May 19.
Article in English | MEDLINE | ID: mdl-35628489

ABSTRACT

Invasion is the most prominent lethal feature of malignant cancer. However, how cell proliferation, another important feature of tumor development, is integrated with tumor invasion and the subsequent cell dissemination from primary tumors is not well understood. Proliferating cell nuclear antigen (PCNA) is essential for DNA replication in cancer cells. Loss of phosphorylation at tyrosine 211 (Y211) in PCNA (pY211-PCNA) mitigates PCNA function in proliferation, triggers replication fork arrest/collapse, which in turn sets off an anti-tumor inflammatory response, and suppresses distant metastasis. Here, we show that pY211-PCNA is important in stromal activation in tumor tissues. Loss of the phosphorylation resulted in reduced expression of mesenchymal proteins as well as tumor progenitor markers, and of the ability of invasion. Spontaneous mammary tumors that developed in mice lacking Y211 phosphorylation contained fewer tumor-initiating cells compared to tumors in wild-type mice. Our study demonstrates a novel function of PCNA as an essential factor for maintaining cancer stemness through Y211 phosphorylation.


Subject(s)
Neoplasm Invasiveness , Neoplasms , Neoplastic Stem Cells , Proliferating Cell Nuclear Antigen , Animals , Cell Proliferation , DNA Replication , Mice , Phosphorylation , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism
5.
Int J Mol Sci ; 20(9)2019 May 08.
Article in English | MEDLINE | ID: mdl-31071955

ABSTRACT

Since imatinib (Glivec or Gleevec) has been used to target the BCR-ABL fusion protein, chronic myeloid leukemia (CML) has become a manageable chronic disease with long-term survival. However, 15%-20% of CML patients ultimately develop resistance to imatinib and then progress to an accelerated phase and eventually to a blast crisis, limiting treatment options and resulting in a poor survival rate. Thus, we investigated whether histone deacetylase inhibitors (HDACis) could be used as a potential anticancer therapy for imatinib-resistant CML (IR-CML) patients. By applying a noninvasive apoptosis detection sensor (NIADS), we found that panobinostat significantly enhanced cell apoptosis in K562 cells. A further investigation showed that panobinostat induced apoptosis in both K562 and imatinib-resistant K562 (IR-K562) cells mainly via H3 and H4 histone acetylation, whereas panobinostat targeted cancer stem cells (CSCs) in IR-K562 cells. Using CRISPR/Cas9 genomic editing, we found that HDAC1 and HDAC2 knockout cells significantly induced cell apoptosis, indicating that the regulation of HDAC1 and HDAC2 is extremely important in maintaining K562 cell survival. All information in this study indicates that regulating HDAC activity provides therapeutic benefits against CML and IR-CML in the clinic.


Subject(s)
Fusion Proteins, bcr-abl/genetics , Histone Deacetylase 1/genetics , Histone Deacetylase 2/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Acetylation/drug effects , Apoptosis/drug effects , CRISPR-Cas Systems/genetics , Drug Resistance, Neoplasm/drug effects , Fusion Proteins, bcr-abl/antagonists & inhibitors , Gene Knockout Techniques , Histone Deacetylase Inhibitors/pharmacology , Humans , Imatinib Mesylate/adverse effects , Imatinib Mesylate/pharmacology , K562 Cells , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Neoplastic Stem Cells/drug effects , Panobinostat/pharmacology
6.
Int J Mol Sci ; 20(2)2019 Jan 21.
Article in English | MEDLINE | ID: mdl-30669676

ABSTRACT

Anaplastic thyroid carcinoma (ATC) and squamous thyroid carcinoma (STC) are both rare and advanced thyroid malignancies with a very poor prognosis and an average median survival time of 5 months and less than 20% of affected patients are alive 1 year after diagnosis. The clinical management of both ATC and STC is very similar because they are not particularly responsive to radiotherapy and chemotherapy. This inspired us to explore a novel and effective clinically approved therapy for ATC treatment. Histone deacetylase inhibitor (HDACi) drugs are recently FDA-approved drug for malignancies, especially for blood cell cancers. Therefore, we investigated whether an HDACi drug acts as an effective anticancer drug for advanced thyroid cancers. Cell viability analysis of panobinostat treatment demonstrated a significant IC50 of 0.075 µM on SW579 STC cells. In addition, panobinostat exposure activated histone acetylation and triggered cell death mainly through cell cycle arrest and apoptosis-related protein activation. Using CRISPR/Cas9 to knock out HDAC1 and HDAC2 genes in SW579 cells, we observed that the histone acetylation level and cell cycle arrest were enhanced without any impact on cell growth. Furthermore, HDAC1 and HDAC2 double knockout (KO) cells showed dramatic cell apoptosis activation compared to HDAC1 and HDAC2 individual KO cells. This suggests expressional and biofunctional compensation between HDAC1 and HDAC2 on SW579 cells. This study provides strong evidence that panobinostat can potentially be used in the clinic of advanced thyroid cancer patients.


Subject(s)
Apoptosis/genetics , Histone Deacetylase 1/genetics , Histone Deacetylase 2/genetics , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Acetylation , Apoptosis/drug effects , CRISPR-Cas Systems , Cell Line, Tumor , Gene Editing , Gene Expression Regulation, Neoplastic/drug effects , Gene Knockout Techniques , Histone Deacetylase Inhibitors/pharmacology , Histones/metabolism , Humans , Neoplasm Metastasis , Neoplasm Staging , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/metabolism
7.
Int J Mol Sci ; 19(2)2018 Feb 02.
Article in English | MEDLINE | ID: mdl-29393914

ABSTRACT

Breast cancer is the most common malignancy in women and the second leading cause of cancer death in women. Triple negative breast cancer (TNBC) subtype is a breast cancer subset without ER (estrogen receptor), PR (progesterone receptor) and HER2 (human epidermal growth factor receptor 2) expression, limiting treatment options and presenting a poorer survival rate. Thus, we investigated whether histone deacetylation inhibitor (HDACi) could be used as potential anti-cancer therapy on breast cancer cells. In this study, we found TNBC and HER2-enriched breast cancers are extremely sensitive to Panobinostat, Belinostat of HDACi via experiments of cell viability assay, apoptotic marker identification and flow cytometry measurement. On the other hand, we developed a bioluminescence-based live cell non-invasive apoptosis detection sensor (NIADS) detection system to evaluate the quantitative and kinetic analyses of apoptotic cell death by HDAC treatment on breast cancer cells. In addition, the use of HDACi may also contribute a synergic anti-cancer effect with co-treatment of chemotherapeutic agent such as doxorubicin on TNBC cells (MDA-MB-231), but not in breast normal epithelia cells (MCF-10A), providing therapeutic benefits against breast tumor in the clinic.


Subject(s)
Antineoplastic Agents/pharmacology , Biological Assay , Gene Expression Regulation, Neoplastic , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/genetics , Hydroxamic Acids/pharmacology , Indoles/pharmacology , Sulfonamides/pharmacology , Cell Line, Tumor , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Female , Flow Cytometry , Histone Deacetylases/metabolism , Humans , Mammary Glands, Human/drug effects , Mammary Glands, Human/metabolism , Mammary Glands, Human/pathology , Panobinostat , Receptor, ErbB-2/deficiency , Receptor, ErbB-2/genetics , Receptors, Estrogen/deficiency , Receptors, Estrogen/genetics , Receptors, Progesterone/deficiency , Receptors, Progesterone/genetics , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology
8.
BMC Cancer ; 17(1): 440, 2017 Jun 23.
Article in English | MEDLINE | ID: mdl-28645267

ABSTRACT

BACKGROUND: As cancer metastasis is the deadliest aspect of cancer, causing 90% of human deaths, evaluating the molecular mechanisms underlying this process is the major interest to those in the drug development field. Both therapeutic target identification and proof-of-concept experimentation in anti-cancer drug development require appropriate animal models, such as xenograft tumor transplantation in transgenic and knockout mice. In the progression of cancer metastasis, circulating tumor cells (CTCs) are the most critical factor in determining the prognosis of cancer patients. Several studies have demonstrated that measuring CTC-specific markers in a clinical setting (e.g., flow cytometry) can provide a current status of cancer development in patients. However, this useful technique has rarely been applied in the real-time monitoring of CTCs in preclinical animal models. METHODS: In this study, we designed a rapid and reliable detection method by combining a bioluminescent in vivo imaging system (IVIS) and quantitative polymerase chain reaction (QPCR)-based analysis to measure CTCs in animal blood. Using the IVIS Spectrum CT System with 3D-imaging on orthotropic-developed breast-tumor-bearing mice. RESULTS: In this manuscript, we established a quick and reliable method for measuring CTCs in a preclinical animal mode. The key to this technique is the use of specific human and mouse GUS primers on DNA/RNA of mouse peripheral blood under an absolute qPCR system. First, the high sensitivity of cancer cell detection on IVIS was presented by measuring the luciferase carried MDA-MB-231 cells from 5 to 5x1011 cell numbers with great correlation (R2 = 0.999). Next, the MDA-MB-231 cell numbers injected by tail vein and their IVIS radiance signals were strongly corrected with qPCR-calculated copy numbers (R2 > 0.99). Furthermore, by applying an orthotropic implantation animal model, we successfully distinguished xenograft tumor-bearing mice and control mice with a significant difference (p < 0.001), whereas IVIS Spectrum-CT 3D-visualization showed that blood of mice with lung metastasis contained more than twice the CTC numbers than ordinary tumor-bearing mice. We demonstrated a positive correlation between lung metastasis status and CTC numbers in peripheral mouse blood. CONCLUSION: Collectively, the techniques developed for this study resulted in the integration of CTC assessments into preclinical models both in vivo and ex vivo, which will facilitate translational targeted therapy in clinical practice.


Subject(s)
Breast Neoplasms/blood , Breast Neoplasms/genetics , Molecular Imaging/methods , Neoplastic Cells, Circulating/pathology , Animals , Biomarkers, Tumor/blood , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Disease Models, Animal , Female , Flow Cytometry , Humans , Mice , Neoplasm Metastasis , Prognosis , Xenograft Model Antitumor Assays
9.
Carcinogenesis ; 35(1): 208-17, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23975832

ABSTRACT

Gastric carcinoma is one of the most common malignancies and the second most lethal cancer worldwide. The mechanisms underlying aggressiveness of gastric cancer still remain obscure. c-Myc promoter binding protein 1 (MBP-1) is a negative regulator of c-myc expression and ubiquitously expressed in normal human tissues. It is produced by alternative translation initiation of α-enolase gene. Both MBP-1 and α-enolase are involved in the control of tumorigenesis including gastric cancer. MicroRNAs (miRNAs) are involved in tumorigenesis and could have diagnostic, prognostic and therapeutic potential. In this study, whether miRNAs modulate tumorigenesis of gastric cancer cells through targeting MBP-1 was evaluated. We found that miR-363 targets 3'-untranslated region of human MBP-1/α-enolase messenger RNA. The exogenous miR-363 promotes growth, viability, progression, epithelial-mesenchymal transition and tumorsphere formation of SC-M1 gastric cancer cells through downregulation of MBP-1, whereas the knockdown of endogenous miR-363 suppresses tumorigenesis and progression of SC-M1 cells via upregulation of MBP-1. The miR-363/MBP-1 axis is also involved in the control of carcinogenesis in KATO III and SNU-16 gastric cancer cells. Furthermore, miR-363 induces the xenografted tumor growth and lung metastasis of SC-M1 cells through MBP-1 in vivo. Taken together, these results suggest that miR-363 plays an important role in the increment of gastric carcinogenesis via targeting MBP-1.


Subject(s)
DNA-Binding Proteins/genetics , MicroRNAs/genetics , Stomach Neoplasms/genetics , 3' Untranslated Regions , Animals , Cell Line, Tumor , DNA-Binding Proteins/metabolism , Down-Regulation , Epithelial-Mesenchymal Transition/genetics , Female , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Mice, Nude , Mice, SCID , Phosphopyruvate Hydratase/genetics , Stomach Neoplasms/pathology , Xenograft Model Antitumor Assays
10.
Sleep Health ; 10(1): 137-143, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38092638

ABSTRACT

INTRODUCTION: A greater fear of falling predicts disability, falls, and mortality among older adults. Although poor sleep has been identified as a relevant risk factor for fear of falling among older adults, evidence is primarily shown in cross-sectional studies using isolated sleep characteristics. Less is known about whether prior fall experiences change the sleep health-fear of falling link among older adults. We investigated the longitudinal relationship between sleep health and the incidence of fear of falling among community-dwelling older adults and how the association differed between those with or without prior fall experiences. METHODS: Data were from individuals who completed the sleep module in the National Health and Aging Trends Study (2013-2014; n = 686). Fear of falling was assessed with a single item. Multidimensional sleep health was measured with self-reported sleep items based on the SATED model (ie, sleep satisfaction, daytime alertness, timing, efficiency, and duration). Covariates included sociodemographics, assistive device usage, health, risky behavior, and sleep medications. Multiple logistic regression was used to analyze the data. RESULTS: Poor sleep health was associated with the onset of fear of falling at 1-year follow-up (odds ratios=1.20, 95% confidence interval=1.02-1.41). Moreover, poor sleep health increased the odds of having fear of falling among individuals without prior falls experiences and elevated the already heightened risks of developing fear of falling among those who fell at baseline. CONCLUSIONS: Given that fear of falling and experiencing a fall each increase the risk of the other occurring in the future, improving sleep health may prevent older adults from stepping into the vicious cycle of fear of falling and falls.


Subject(s)
Independent Living , Sleep Initiation and Maintenance Disorders , Humans , Aged , Accidental Falls/prevention & control , Cross-Sectional Studies , Fear , Sleep
11.
Cells ; 13(7)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38607055

ABSTRACT

The management of chronic myelogenous leukemia (CML) has seen significant progress with the introduction of tyrosine kinase inhibitors (TKIs), particularly Imatinib. However, a notable proportion of CML patients develop resistance to Imatinib, often due to the persistence of leukemia stem cells and resistance mechanisms independent of BCR::ABL1 This study investigates the roles of IL6R, IL7R, and MYC in Imatinib resistance by employing CRISPR/Cas9 for gene editing and the Non-Invasive Apoptosis Detection Sensor version 2 (NIADS v2) for apoptosis assessment. The results indicate that Imatinib-resistant K562 cells (K562-IR) predominantly express IL6R, IL7R, and MYC, with IL6R and MYC playing crucial roles in cell survival and sensitivity to Imatinib. Conversely, IL7R does not significantly impact cytotoxicity, either alone or in combination with Imatinib. Further genetic editing experiments confirm the protective functions of IL6R and MYC in K562-IR cells, suggesting their potential as therapeutic targets for overcoming Imatinib resistance in CML. This study contributes to understanding the mechanisms of Imatinib resistance in CML, proposing IL6R and MYC as pivotal targets for therapeutic strategies. Moreover, the utilization of NIADS v2 enhances our capability to analyze apoptosis and drug responses, contributing to a deeper understanding of CML pathogenesis and treatment options.


Subject(s)
Biomarkers , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Proto-Oncogene Proteins c-myc , Receptors, Interleukin-6 , Humans , Apoptosis , Drug Resistance, Neoplasm , Imatinib Mesylate/pharmacology , Imatinib Mesylate/therapeutic use , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
12.
Cancer Med ; 12(8): 9788-9801, 2023 04.
Article in English | MEDLINE | ID: mdl-36847128

ABSTRACT

PURPOSE: Metastasis is the end stage of renal cell carcinoma (RCC), and clear cell renal cell carcinoma (ccRCC) is the most common malignant subtype. The hypoxic microenvironment is a common feature in ccRCC and plays an essential role in the regulation of epithelial-mesenchymal transition (EMT). Accumulating evidence manifests that long non-coding RNAs (lncRNAs) participate in RCC tumorigenesis and regulate hypoxia-induced EMT. Here, we identified a lncRNA RP11-367G18.1 induced by hypoxia, that was overexpressed in ccRCC tissues. METHODS: A total of 216 specimens, including 149 ccRCC tumor samples and 67 related normal kidney parenchyma tissue samples, were collected. To investigate the biological fucntions of RP11.367G18.1 in ccRCC, migration, invasion, soft agar colony formation, xenograft tumorigenicity assays, and tail vein and orthotopic metastatic mouse models were performed. The relationship between RP11-367G18.1 and downstream signaling was analyzed utilizing reporter assay, RNA pull-down, chromatin immunopreciptation, and chromatin isolation by RNA purification assays. RESULTS: Hypoxic conditions and overexpression of HIF-1α increased the level of RP11-367G18.1. RP11-367G18.1 induced EMT and enhanced cell migration and invasion through variant 2. Inhibition of RP11-367G18.1 variant 2 reversed hypoxia-induced EMT phenotypes. An in vivo study revealed that RP11-367G18.1 variant 2 was required for hypoxia-induced tumor growth and metastasis in ccRCC. Mechanistically, RP11-367G18.1 variant 2 interacted with p300 histone acetyltransferase to regulate lysine 16 acetylation on histone 4 (H4K16Ac), thus contributing to hypoxia-regulated gene expression. Clinically, RP11-367G18.1 variant 2 was upregulated in ccRCC tissues, particularly metastatic ccRCC tissues, and it is linked to poor overall survival. CONCLUSION: These findings demonstrate the prognostic value and EMT-promoting role of RP11-367G18.1 and indicate that this lncRNA may provide a therapeutic target for ccRCC.


Subject(s)
Carcinoma, Renal Cell , Carcinoma , Kidney Neoplasms , RNA, Long Noncoding , Animals , Mice , Humans , Carcinoma, Renal Cell/pathology , Epithelial-Mesenchymal Transition/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Carcinoma/genetics , Kidney Neoplasms/pathology , Hypoxia/genetics , Chromatin , Cell Movement/genetics , Gene Expression Regulation, Neoplastic , Tumor Microenvironment
13.
Carcinogenesis ; 33(8): 1459-67, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22581828

ABSTRACT

Gastric carcinoma is one of the most common malignancies and a lethal cancer in the world. Notch signaling and transcription factors STAT3 (signal transducer and activator of transcription 3) and Twist regulate tumor development and are critical regulators of gastric cancer progression. Herein, the relationship among Notch, STAT3 and Twist pathways in the control of gastric cancer progression was studied. We found that Twist and phosphorylated STAT3 levels were promoted by the activated Notch1 receptor in human stomach adenocarcinoma SC-M1, embryonic kidney HEK293 and erythroleukemia K562 cells. Notch1 signaling dramatically induced Twist promoter activity through a C promoter binding factor-1-independent manner and STAT3 phosphorylation. Overexpression of Notch1 receptor intracellular domain (N1IC) enhanced the interaction between nuclear STAT3 and Twist promoter in cells. Gastric cancer progression of SC-M1 cells was promoted by N1IC through STAT3 phosphorylation and Twist expression including colony formation, migration and invasion. STAT3 regulated gastric cancer progression of SC-M1 cells via Twist. N1IC also elevated the progression of other gastric cancer cells such as AGS and KATO III cells through STAT3 and Twist. The N1IC-promoted tumor growth and lung metastasis of SC-M1 cells in mice were suppressed by the STAT3 inhibitor JSI-124 and Twist knockdown. Furthermore, Notch1 and Notch ligand Jagged1 expressions were significantly associated with phosphorylated STAT3 and Twist levels in gastric cancer tissues of patients. Taken together, these results suggest that Notch1/STAT3/Twist signaling axis is involved in progression of human gastric cancer and modulation of this cascade has potential for the targeted combination therapy.


Subject(s)
Nuclear Proteins/metabolism , Receptor, Notch1/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction , Stomach Neoplasms/pathology , Twist-Related Protein 1/metabolism , Base Sequence , Cell Line, Tumor , DNA Primers , Disease Progression , Humans , Nuclear Proteins/genetics , Phosphorylation , Receptor, Notch1/genetics , STAT3 Transcription Factor/genetics , Stomach Neoplasms/metabolism , Twist-Related Protein 1/genetics
14.
Mol Carcinog ; 51(12): 939-51, 2012 Dec.
Article in English | MEDLINE | ID: mdl-21976141

ABSTRACT

Gastric carcinoma is one of the most common and mortal types of malignancy worldwide. To date, the mechanisms controlling its aggressiveness are not yet fully understood. Notch signal pathway can function as either an oncogene or a tumor suppressor in tumorigenesis. Four members (Notch1-4) of Notch receptors were found in mammals and each exhibits distinct roles in tumor progression. Previous study showed that the activated Notch1 receptor promoted gastric cancer progression through cyclooxygenase-2 (COX-2). This study addressed whether Notch2 signal pathway is also involved in gastric cancer progression. Constitutive expression of Notch2 intracellular domain (N2IC), the activated form of Notch2 receptor, promoted both cell proliferation and xenografted tumor growth of human stomach adenocarcinoma SC-M1 cells. The colony formation, migration, invasion, and wound-healing abilities of SC-M1 cells were enhanced by N2IC expression, whereas these abilities were suppressed by Notch2 knockdown. Similarly, Notch2 knockdown inhibited cancer progressions of AGS and AZ521 gastric cancer cells. Expression of N2IC also caused epithelial-mesenchymal transition in SC-M1 cells. Furthermore, N2IC bound to COX-2 promoter and induced COX-2 expression through a CBF1-dependent manner in SC-M1 cells. The ability of N2IC to enhance tumor progression in SC-M1 cells was suppressed by knockdown of COX-2 or treatment with NS-398, a COX-2 inhibitor. Moreover, the suppression of tumor progression by Notch2 knockdown in SC-M1 cells was reversed by exogenous COX-2 or its major enzymatic product PGE(2) . Taken together, this study is the first to demonstrate that the Notch2-COX-2 signaling axis plays an important role in controlling gastric cancer progression.


Subject(s)
Cyclooxygenase 2/metabolism , Receptor, Notch2/physiology , Stomach Neoplasms/pathology , Animals , Base Sequence , Cell Line, Tumor , DNA Primers , Disease Progression , Gene Knockdown Techniques , Humans , Mice , Mice, Nude , Real-Time Polymerase Chain Reaction , Receptor, Notch2/genetics , Stomach Neoplasms/genetics
15.
Transl Oncol ; 15(1): 101302, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34890965

ABSTRACT

Breast cancer is common worldwide, and the estrogen receptor-positive subtype accounts for approximately 70% of breast cancer in women. Tamoxifen and fulvestrant are drugs currently used for endocrinal therapy. Breast cancer exhibiting endocrine resistance can undergo metastasis and lead to the death of breast cancer patients. Drug repurposing is an active area of research in clinical medicine. We found that nafamostat mesylate, clinically used for patients with pancreatitis and disseminated intravascular coagulation, acts as an anti-cancer drug for endocrine-resistant estrogen receptor-positive breast cancer (ERPBC). Epigenetic repression of CDK4 and CDK6 by nafamostat mesylate induced apoptosis and suppressed the metastasis of ERPBC through the deacetylation of Histone 3 Lysine 27. A combination of nafamostat mesylate and CDK4/6 inhibitor synergistically overcame endocrine resistance in ERPBC. Nafamostat mesylate might be an essential adjuvant or alternative drug for the treatment of endocrine-resistant ERPBC due to the low cost-efficiency of the CDK4/6 inhibitor.

16.
Cells ; 11(20)2022 10 19.
Article in English | MEDLINE | ID: mdl-36291159

ABSTRACT

Triple-negative breast cancer (TNBC) accounts for 15-20% of all breast cancer. TNBC does not express the estrogen receptor, progesterone receptor, or human epidermal growth factor receptor 2. Cytotoxic chemotherapy and surgery are the current therapeutic strategies for TNBC patients, but the chemoresistance of TNBC limits the efficiency of this strategy and shortens the lifespan of patients. The exploration of targeted therapy is ongoing in TNBC research. The aim of the present study was to identify the mechanism underlying acquired resistance in TNBC through the exploration of the relationship between the expression of USP7 and of ABCB1. We found that ubiquitin specific protease 7 (USP7) is a potential therapeutic target for overcoming the chemoresistance of TNBC. USP7 overexpression increased the chemoresistance of TNBC, while the knockdown of USP7 effectively increased the chemosensitivity of chemoresistant TNBC. A USP7 inhibitor effectively induced apoptosis and suppressed metastasis in chemoresistant TNBC. We further clarified that USP7 is a specific deubiquitinating enzyme for ABCB1 that plays an essential role in drug resistance. USP7 directly interacted with ABCB1 and regulated its stability. We concluded that USP7 promotes the chemoresistance of TNBC by stabilizing the ABCB1 protein.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/pathology , Ubiquitin-Specific Peptidase 7/metabolism , Drug Resistance, Neoplasm , Receptors, Progesterone/metabolism , Cell Line, Tumor , ATP Binding Cassette Transporter, Subfamily B, Member 1 , Estrogens/therapeutic use , ATP Binding Cassette Transporter, Subfamily B/genetics
17.
FEBS Open Bio ; 12(5): 993-1005, 2022 05.
Article in English | MEDLINE | ID: mdl-35313079

ABSTRACT

Squamous and anaplastic thyroid cancers are the most aggressive and life-threatening cancer types in humans, with the involvement of lymph nodes in 59% of cases and distant metastases in 26% of cases of all thyroid cancers. The median survival of squamous thyroid cancer patients is < 8 months and therefore is of high clinical concern. Here, we show that both VEGFC and VEGFR2/KDR are overexpressed in thyroid cancers, indicating that VEGF/VEGFR signaling plays a carcinogenic role in thyroid cancer development. Using CRISPR/Cas9, we established a KDR knockout (KO) SW579 squamous thyroid cancer cell line that exhibited dramatically decreased colony formation and invasion abilities (30% and 60% reduction, respectively) when compared to scrambled control cells. To validate the potential of KDR as a therapeutic target for thyroid cancers, we used the KDR RTK inhibitor sunitinib. Protein analysis and live/dead assay were performed to demonstrate that sunitinib significantly inhibited cell growth signal transduction and induced cell apoptosis of SW579 cells. These results suggest that selective targeting of KDR may have potential for development into novel anti-cancer therapies to suppress VEGF/VEGFR-mediated cancer development in patients with clinical advanced thyroid cancer.


Subject(s)
Carcinoma, Squamous Cell , Thyroid Neoplasms , Cell Line , Humans , Sunitinib , Thyroid Neoplasms/genetics , Thyroid Neoplasms/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics
18.
Genome Biol ; 23(1): 249, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36461076

ABSTRACT

BACKGROUND: DNA N6-methyldeoxyadenosine (6mA) is rarely present in mammalian cells and its nuclear role remains elusive. RESULTS: Here we show that hypoxia induces nuclear 6mA modification through a DNA methyltransferase, METTL4, in hypoxia-induced epithelial-mesenchymal transition (EMT) and tumor metastasis. Co-expression of METTL4 and 6mA represents a prognosis marker for upper tract urothelial cancer patients. By RNA sequencing and 6mA chromatin immunoprecipitation-exonuclease digestion followed by sequencing, we identify lncRNA RP11-390F4.3 and one novel HIF-1α co-activator, ZMIZ1, that are co-regulated by hypoxia and METTL4. Other genes involved in hypoxia-mediated phenotypes are also regulated by 6mA modification. Quantitative chromatin isolation by RNA purification assay shows the occupancy of lncRNA RP11-390F4.3 on the promoters of multiple EMT regulators, indicating lncRNA-chromatin interaction. Knockdown of lncRNA RP11-390F4.3 abolishes METTL4-mediated tumor metastasis. We demonstrate that ZMIZ1 is an essential co-activator of HIF-1α. CONCLUSIONS: We show that hypoxia results in enriched 6mA levels in mammalian tumor cells through METTL4. This METTL4-mediated nuclear 6mA deposition induces tumor metastasis through activating multiple metastasis-inducing genes. METTL4 is characterized as a potential therapeutic target in hypoxic tumors.


Subject(s)
RNA, Long Noncoding , Urinary Bladder Neoplasms , Animals , Methylation , RNA, Long Noncoding/genetics , Chromatin , Hypoxia , Deoxyadenosines , Mammals
19.
Comput Struct Biotechnol J ; 20: 4626-4635, 2022.
Article in English | MEDLINE | ID: mdl-36090818

ABSTRACT

Lung cancer is a major cause of cancer-associated deaths worldwide, and lung adenocarcinoma (LUAD) is the most common lung cancer subtype. Micro RNAs (miRNAs) regulate the pattern of gene expression in multiple cancer types and have been explored as potential drug development targets. To develop an oncomiR-based panel, we identified miRNA candidates that show differential expression patterns and are relevant to the worse 5-year overall survival outcomes in LUAD patient samples. We further evaluated various combinations of miRNA candidates for association with 5-year overall survival and identified a four-miRNA panel: miR-9-5p, miR-1246, miR-31-3p, and miR-3136-5p. The combination of these four miRNAs outperformed any single miRNA for predicting 5-year overall survival (hazard ratio [HR]: 3.47, log-rank p-value = 0.000271). Experiments were performed on lung cancer cell lines and animal models to validate the effects of these miRNAs. The results showed that singly transfected antagomiRs largely inhibited cell growth, migration, and invasion, and the combination of all four antagomiRs considerably reduced cell numbers, which is twice as effective as any single miRNA-targeted transfected. The in vivo studies revealed that antagomiR-mediated knockdown of all four miRNAs significantly reduced tumor growth and metastatic ability of lung cancer cells compared to the negative control group. The success of these in vivo and in vitro experiments suggested that these four identified oncomiRs may have therapeutic potential.

20.
Am J Cancer Res ; 11(8): 3766-3776, 2021.
Article in English | MEDLINE | ID: mdl-34522448

ABSTRACT

Liquid-liquid phase separation (LLPS) has emerged as a mechanism that has been used to explain the formation of known organelles (e.g. nucleoli, promyelocytic leukemia nuclear bodies (PML NBs), etc) as well as other membraneless condensates (e.g. nucleosome arrays, DNA damage foci, X-chromosome inactivation (XCI) center, paraspeckles, stress granules, proteasomes, autophagosomes, etc). The formation of membraneless condensates could be triggered by proteins containing modular domains or intrinsically disordered regions (IDRs) and nucleic acids. Multiple biological processes including transcription, chromatin organization, X-chromosome inactivation (XCI), DNA damage, tumorigenesis, autophagy, etc have been shown to utilize the principle of LLPS to facilitate these processes. This review will summarize the principle and components of LLPS, and describe how LLPS regulate these numerous biological processes and disruption of LLPS would cause disease formation. The role of LLPS in regulating normal cellular physiology and contributing to tumorigenesis will be discussed.

SELECTION OF CITATIONS
SEARCH DETAIL