ABSTRACT
Natural killer (NK) cells are innate cytotoxic lymphocytes with adaptive immune features, including antigen specificity, clonal expansion and memory. As such, NK cells share many transcriptional and epigenetic programs with their adaptive CD8+ T cell siblings. Various signals ranging from antigen, co-stimulation and proinflammatory cytokines are required for optimal NK cell responses in mice and humans during virus infection; however, the integration of these signals remains unclear. In this study, we identified that the transcription factor IRF4 integrates signals to coordinate the NK cell response during mouse cytomegalovirus infection. Loss of IRF4 was detrimental to the expansion and differentiation of virus-specific NK cells. This defect was partially attributed to the inability of IRF4-deficient NK cells to uptake nutrients required for survival and memory generation. Altogether, these data suggest that IRF4 is a signal integrator that acts as a secondary metabolic checkpoint to orchestrate the adaptive response of NK cells during viral infection.
Subject(s)
Cytomegalovirus Infections , Virus Diseases , Humans , Mice , Animals , Trained Immunity , Killer Cells, Natural , CD8-Positive T-Lymphocytes , Immunologic MemoryABSTRACT
Cytokine signaling via signal transducer and activator of transcription (STAT) proteins is crucial for optimal antiviral responses of natural killer (NK) cells. However, the pleiotropic effects of both cytokine and STAT signaling preclude the ability to precisely attribute molecular changes to specific cytokine-STAT modules. Here, we employed a multi-omics approach to deconstruct and rebuild the complex interaction of multiple cytokine signaling pathways in NK cells. Proinflammatory cytokines and homeostatic cytokines formed a cooperative axis to commonly regulate global gene expression and to further repress expression induced by type I interferon signaling. These cytokines mediated distinct modes of epigenetic regulation via STAT proteins, and collective signaling best recapitulated global antiviral responses. The most dynamically responsive genes were conserved across humans and mice, which included a cytokine-STAT-induced cross-regulatory program. Thus, an intricate crosstalk exists between cytokine signaling pathways, which governs NK cell responses.
Subject(s)
Epigenesis, Genetic/immunology , Herpesviridae Infections/immunology , Interleukins/metabolism , Killer Cells, Natural/immunology , STAT Transcription Factors/metabolism , Animals , Cell Separation , Chromatin Immunoprecipitation Sequencing , Disease Models, Animal , Female , Flow Cytometry , Gene Regulatory Networks/immunology , Herpesviridae Infections/blood , Herpesviridae Infections/virology , Humans , Immunity, Innate/genetics , Killer Cells, Natural/metabolism , Male , Mice , Mice, Knockout , Muromegalovirus/immunology , Principal Component Analysis , RNA-Seq , STAT Transcription Factors/genetics , Signal Transduction/genetics , Signal Transduction/immunologyABSTRACT
Fasting is associated with improved outcomes in cancer. Here, we investigated the impact of fasting on natural killer (NK) cell anti-tumor immunity. Cyclic fasting improved immunity against solid and metastatic tumors in an NK cell-dependent manner. During fasting, NK cells underwent redistribution from peripheral tissues to the bone marrow (BM). In humans, fasting also reduced circulating NK cell numbers. NK cells in the spleen of fasted mice were metabolically rewired by elevated concentrations of fatty acids and glucocorticoids, augmenting fatty acid metabolism via increased expression of the enzyme CPT1A, and Cpt1a deletion impaired NK cell survival and function in this setting. In parallel, redistribution of NK cells to the BM during fasting required the trafficking mediators S1PR5 and CXCR4. These cells were primed by an increased pool of interleukin (IL)-12-expressing BM myeloid cells, which improved IFN-γ production. Our findings identify a link between dietary restriction and optimized innate immune responses, with the potential to enhance immunotherapy strategies.
Subject(s)
Fasting , Killer Cells, Natural , Mice, Inbred C57BL , Animals , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Mice , Humans , Neoplasms/immunology , Bone Marrow/immunology , Bone Marrow/metabolism , Mice, Knockout , Interferon-gamma/metabolism , Interferon-gamma/immunology , Spleen/immunology , Spleen/metabolism , Immunity, Innate/immunology , Interleukin-12/metabolism , Interleukin-12/immunology , Receptors, CXCR4/metabolismABSTRACT
Immune cells identify and destroy tumors by recognizing cellular traits indicative of oncogenic transformation. In this study, we found that myocardin-related transcription factors (MRTFs), which promote migration and metastatic invasion, also sensitize cancer cells to the immune system. Melanoma and breast cancer cells with high MRTF expression were selectively eliminated by cytotoxic lymphocytes in mouse models of metastasis. This immunosurveillance phenotype was further enhanced by treatment with immune checkpoint blockade (ICB) antibodies. We also observed that high MRTF signaling in human melanoma is associated with ICB efficacy in patients. Using biophysical and functional assays, we showed that MRTF overexpression rigidified the filamentous actin cytoskeleton and that this mechanical change rendered mouse and human cancer cells more vulnerable to cytotoxic T lymphocytes and natural killer cells. Collectively, these results suggest that immunosurveillance has a mechanical dimension, which we call mechanosurveillance, that is particularly relevant for the targeting of metastatic disease.
Subject(s)
Lymphocytes/immunology , Neoplasms/immunology , Actin Cytoskeleton/immunology , Actins/immunology , Animals , Cell Communication/immunology , Cell Line , Cell Line, Tumor , Cell Movement/immunology , Female , HEK293 Cells , Humans , Killer Cells, Natural/immunology , MCF-7 Cells , Male , Mice , Mice, Inbred C57BL , Signal Transduction/immunology , Transcription Factors/immunologyABSTRACT
The process of affinity maturation, whereby T and B cells bearing antigen receptors with optimal affinity to the relevant antigen undergo preferential expansion, is a key feature of adaptive immunity. Natural killer (NK) cells are innate lymphocytes capable of "adaptive" responses after cytomegalovirus (CMV) infection. However, whether NK cells are similarly selected on the basis of their avidity for cognate ligand is unknown. Here, we showed that NK cells with the highest avidity for the mouse CMV glycoprotein m157 were preferentially selected to expand and comprise the memory NK cell pool, whereas low-avidity NK cells possessed greater capacity for interferon-γ (IFN-γ) production. Moreover, we provide evidence for avidity selection occurring in human NK cells during human CMV infection. These results delineate how heterogeneity in NK cell avidity diversifies NK cell effector function during antiviral immunity, and how avidity selection might serve to produce the most potent memory NK cells.
Subject(s)
Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/virology , Cytomegalovirus/immunology , Host-Pathogen Interactions/immunology , Killer Cells, Natural/immunology , Animals , Cytomegalovirus Infections/metabolism , Cytotoxicity, Immunologic , Gene Expression Regulation , Herpesviridae Infections/immunology , Herpesviridae Infections/metabolism , Herpesviridae Infections/virology , Host-Pathogen Interactions/genetics , Humans , Immunologic Memory , Killer Cells, Natural/metabolism , Lymphocyte Activation/immunology , Mice , Mice, Knockout , Muromegalovirus/immunology , NK Cell Lectin-Like Receptor Subfamily A/genetics , NK Cell Lectin-Like Receptor Subfamily A/metabolism , T-Cell Antigen Receptor SpecificityABSTRACT
Natural killer (NK) cells are a vital part of the innate immune system capable of rapidly clearing mutated or infected cells from the body and promoting an immune response. Here, we find that NK cells activated by viral infection or tumor challenge increase uptake of fatty acids and their expression of carnitine palmitoyltransferase I (CPT1A), a critical enzyme for long-chain fatty acid oxidation. Using a mouse model with an NK cell-specific deletion of CPT1A, combined with stable 13C isotope tracing, we observe reduced mitochondrial function and fatty acid-derived aspartate production in CPT1A-deficient NK cells. Furthermore, CPT1A-deficient NK cells show reduced proliferation after viral infection and diminished protection against cancer due to impaired actin cytoskeleton rearrangement. Together, our findings highlight that fatty acid oxidation promotes NK cell metabolic resilience, processes that can be optimized in NK cell-based immunotherapies.
Subject(s)
Neoplasms , Virus Diseases , Humans , Lipid Metabolism , Killer Cells, Natural , Fatty AcidsABSTRACT
The effector potential of NK cells is counterbalanced by their sensitivity to inhibition by "self" MHC class I molecules in a process called "education." In humans, interactions between inhibitory killer immunoglobulin-like receptors (KIR) and human MHC (HLA) mediate NK cell education. In HLA-B(∗)27:05(+) transgenic mice and in patients undergoing HLA-mismatched hematopoietic cell transplantation (HCT), NK cells derived from human CD34(+) stem cells were educated by HLA from both donor hematopoietic cells and host stromal cells. Furthermore, mature human KIR3DL1(+) NK cells gained reactivity after adoptive transfer to HLA-B(∗)27:05(+) mice or bone marrow chimeric mice where HLA-B(∗)27:05 was restricted to either the hematopoietic or stromal compartment. Silencing of HLA in primary NK cells diminished NK cell reactivity, while acquisition of HLA from neighboring cells increased NK cell reactivity. Altogether, these findings reveal roles for cell-extrinsic HLA in driving NK cell reactivity upward, and cell-intrinsic HLA in maintaining NK cell education.
Subject(s)
Autoantigens/metabolism , Cord Blood Stem Cell Transplantation , HLA-B27 Antigen/metabolism , Hematologic Neoplasms/therapy , Killer Cells, Natural/immunology , Receptors, KIR3DL1/metabolism , Stromal Cells/immunology , Animals , Antigens, CD34/metabolism , Cell Differentiation , Cells, Cultured , Chimerism , Extracellular Space/metabolism , HLA-B27 Antigen/genetics , Hematologic Neoplasms/immunology , Humans , Isoantigens/immunology , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Transgenic , RNA, Small Interfering/geneticsABSTRACT
Human CMV (HCMV) is a ubiquitous pathogen that indelibly shapes the NK cell repertoire. Using transcriptomic, epigenomic, and proteomic approaches to evaluate peripheral blood NK cells from healthy human volunteers, we find that prior HCMV infection promotes NK cells with a T cell-like gene profile, including the canonical markers CD3ε, CD5, and CD8ß, as well as the T cell lineage-commitment transcription factor Bcl11b. Although Bcl11b expression is upregulated during NK maturation from CD56bright to CD56dim, we find a Bcl11b-mediated signature at the protein level for FcεRIγ, PLZF, IL-2Rß, CD3γ, CD3δ, and CD3ε in later-stage, HCMV-induced NK cells. BCL11B is targeted by Notch signaling in T cell development, and culture of NK cells with Notch ligand increases cytoplasmic CD3ε expression. The Bcl11b-mediated gain of CD3ε, physically associated with CD16 signaling molecules Lck and CD247 in NK cells is correlated with increased Ab-dependent effector function, including against HCMV-infected cells, identifying a potential mechanism for their prevalence in HCMV-infected individuals and their prospective clinical use in Ab-based therapies.
Subject(s)
Antibody-Dependent Cell Cytotoxicity/immunology , Cytomegalovirus Infections/immunology , Killer Cells, Natural/immunology , Lymphocyte Subsets/immunology , Repressor Proteins/immunology , Tumor Suppressor Proteins/immunology , Animals , CD3 Complex/immunology , Humans , Mice , Mice, Transgenic , TranscriptomeABSTRACT
The functional capacities of natural killer (NK) cells differ within and between individuals, reflecting considerable genetic variation. 'Licensing/arming', 'disarming', and 'tuning' are models that have been proposed to explain how interactions between MHC class I molecules and their cognate inhibitory receptors - Ly49 in mice and KIR in humans - 'educate' NK cells for variable reactivity and sensitivity to inhibition. In this review we discuss recent progress toward understanding the genetic, epigenetic, and molecular features that titrate NK effector function and inhibition, and the impact of variable NK cell education on human health and disease.
Subject(s)
Histocompatibility Antigens Class I/metabolism , Immune System Diseases/immunology , Killer Cells, Natural/physiology , Neoplasms/immunology , Receptors, KIR/metabolism , Animals , Cell Differentiation , Cytotoxicity, Immunologic , Epigenesis, Genetic , Genetic Predisposition to Disease , Histocompatibility Antigens Class I/genetics , Humans , Immune System Diseases/genetics , Lymphocyte Activation , Mice , Neoplasms/genetics , Polymorphism, Genetic , Receptors, KIR/genetics , Signal TransductionABSTRACT
Previous studies have suggested that HLA-E may have a significant role in the outcome of matched unrelated hematopoietic stem cell transplantation (HSCT), especially for patients with acute leukemia. We used Center for International Blood and Marrow Transplant Research data and samples of 1840 adult patients with acute leukemia and their 10/10 HLA-matched unrelated donors to investigate the impact of HLA-E matching status as well as of donor/recipient (D/R) HLA-E genotype on post-HSCT outcome. Both patients and donors were HLA-E genotyped by next-generation sequencing. All patients received their first transplant in complete remission between 2000 and 2015. Median follow-up time was 90 months. Overall survival, disease-free survival (DFS), transplant-related mortality (TRM), and relapse incidence were primary endpoints with statistical significance set at .01. D/R HLA-E genotype analysis revealed a significant association of donor HLA-E*01:03/01:03 genotype with DFS (hazard ratio [HR]â¯=â¯1.35, Pâ¯=â¯.0006) and TRM (HRâ¯=â¯1.41, Pâ¯=â¯.0058) in patients who received T cell replete (ie, without in vivo T cell depletion) transplants (nâ¯=â¯1297). As for D/R HLA-E matching, we did not identify any significant effect on any of the clinical outcome endpoints. In conclusion, this is the largest study to date reporting an improvement of DFS and TRM after matched unrelated HSCT by avoidance of HLA-E*01:03 homozygous donors in patients transplanted with T cell replete grafts for acute leukemia.
Subject(s)
Hematopoietic Stem Cell Transplantation , Histocompatibility Antigens Class I , Leukemia , Lymphocyte Depletion , Unrelated Donors , Acute Disease , Adolescent , Adult , Aged , Allografts , Disease-Free Survival , Female , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Humans , Leukemia/genetics , Leukemia/immunology , Leukemia/mortality , Leukemia/therapy , Male , Middle Aged , Survival Rate , HLA-E AntigensABSTRACT
HLA haplotype mismatches have been associated with an elevated risk of acute graft-versus-host disease (aGVHD) in patients undergoing HLA-matched unrelated donor (URD) hematopoietic cell transplantation (HCT). The gamma block (GB) is located in the central MHC region between beta and delta blocks (encoding HLA-B and -C and HLA-DQ and -DR antigens, respectively) and contains numerous inflammatory and immune regulatory genes, including Bf, C2, and C4 genes. A single-center study showed that mismatches in SNPs c.2918+98G, c.3316C, and c.4385C in the GB block (C4 SNPs) were associated with higher risk of grade III-IV aGVHD. We investigated the association of GB SNP (GBS) mismatches with outcomes after 10/10 and 9/10 URD HCT (nâ¯=â¯714). The primary outcome was acute GVHD. Overall survival, disease-free survival, transplantation-related mortality, relapse, chronic GVHD, and engraftment were also analyzed. DNA samples were GBS genotyped by identifying 338 SNPs across 20 kb using the Illumina NGS platform. The overall 100-day incidence of aGVHD grade II-IV and II-IV were 41% and 17%, respectively. The overall incidence of matching at all GBSs tested and at the C4 SNPs were 23% and 81%, respectively. Neither being matched across all GB SNPs tested (versus mismatched) nor having a higher number of GBS mismatches was associated with transplantation outcomes. There was no association between C4 SNP mismatches and outcomes except for an unexpected significant association between having 2 C4 SNP mismatches and a higher hazard ratio (HR) for relapse (association seen in 15 patients only; HR, 3.38, 95% confidence interval, 1.75 to 6.53; Pâ¯=â¯.0003). These data do not support the hypothesis that mismatching at GB is associated with outcomes after HCT.
Subject(s)
Hematopoietic Stem Cell Transplantation/methods , Histocompatibility Testing/methods , Major Histocompatibility Complex/genetics , Polymorphism, Single Nucleotide/genetics , Transplantation Conditioning/methods , Female , Humans , Male , Middle Aged , Treatment OutcomeABSTRACT
Even in the modern era of targeted therapies, allogeneic hematopoietic stem cell transplantation (allo-HCT) can offer a chance of extended survival in B cell non-Hodgkin lymphoma (B-NHL) patients who relapse after or are deemed ineligible for autologous transplantation. A better understanding of the factors influencing the graft-versus-lymphoma (GVL) response would be useful in identifying B-NHL patients who may benefit from allo-HCT. Based on prior single-center reports, we hypothesized that certain HLA alleles, or haplotypes, may be associated with superior GVL compared with others after allo-HCT. To test this possibility we retrospectively evaluated whether the presence of HLA-A2, HLA-C1C1, HLA-DRB1*01:01, or HLA-DRB1*13 alleles or the presence of HLA-A1+, HLA-A2-, and HLA-B44- haplotypes is associated with outcomes in a cohort of 1314 HLA-8/8 matched sibling or unrelated donor HCT for relapsed/refractory B-NHL. We observed no significant association between any HLA allele or haplotype and overall survival or any of the secondary endpoints. In conclusion, this study represents the largest reported series of allo-HCT outcomes of B-NHL patients based on HLA type. Identification of other variables will be required to delineate the immunologic impact of donor-host interactions on outcomes of allo-HCT for B-NHL.
Subject(s)
Alleles , Graft vs Tumor Effect , HLA Antigens , Hematopoietic Stem Cell Transplantation , Lymphoma, B-Cell , Siblings , Unrelated Donors , Adult , Aged , Allografts , Disease-Free Survival , Female , Graft vs Tumor Effect/genetics , Graft vs Tumor Effect/immunology , HLA Antigens/genetics , HLA Antigens/immunology , Humans , Lymphoma, B-Cell/genetics , Lymphoma, B-Cell/immunology , Lymphoma, B-Cell/mortality , Lymphoma, B-Cell/therapy , Male , Middle Aged , Retrospective Studies , Survival RateABSTRACT
The survival of patients undergoing hematopoietic cell transplantation (HCT) from unrelated donors for acute leukemia exhibits considerable variation, even after stringent genetic matching. To improve the donor selection process, we attempted to create an algorithm to quantify the likelihood of survival to 5 years after unrelated donor HCT for acute leukemia, based on the clinical characteristics of the donor selected. All standard clinical variables were included in the model, which also included average leukocyte telomere length of the donor based on its association with recipient survival in severe aplastic anemia, and links to multiple malignancies. We developed a multivariate classifier that assigned a Preferred or NotPreferred label to each prospective donor based on the survival of the recipient. In a previous analysis using a resampling method, recipients with donors labeled Preferred experienced clinically compelling better survival compared with those labeled NotPreferred by the test. However, in a pivotal validation study in an independent cohort of 522 patients, the overall survival of the Preferred and NotPreferred donor groups was not significantly different. Although machine learning approaches have successfully modeled other biological phenomena and have led to accurate predictive models, our attempt to predict HCT outcomes after unrelated donor transplantation was not successful.
Subject(s)
Donor Selection/methods , Hematopoietic Stem Cell Transplantation/methods , Machine Learning , Prognosis , Acute Disease , Algorithms , Donor Selection/standards , Hematopoietic Stem Cell Transplantation/mortality , Hematopoietic Stem Cell Transplantation/standards , Humans , Leukemia/diagnosis , Leukemia/therapy , Predictive Value of Tests , Survival Rate , Unrelated DonorsABSTRACT
Donor factors, in addition to HLA matching status, have been associated with recipient survival in unrelated donor (URD) hematopoietic cell transplantation (HCT); however, there is no hierarchical algorithm that weights the characteristics of individual donors against each other in a quantitative manner to facilitate donor selection. The goal of this study was to develop and validate a donor selection score that prioritizes donor characteristics associated with better survival in 8/8 HLA-matched URDs. Two separate patient/donor cohorts, the first receiving HCT between 1999 and 2011 (n = 5952, c1), and the second between 2012 and 2014 (n = 4510, c2) were included in the analysis. Both cohorts were randomly spilt, 2:1, into training and testing sets. Despite studying over 10,000 URD transplants, we were unable to validate a donor selection score. The only donor characteristic associated with better survival was younger age, with 2-year survival being 3% better when a donor 10 years younger is selected. These results support previous studies suggesting prioritization of a younger 8/8 HLA-matched donor. This large dataset also shows that none of the other donor clinical factors tested were reproducibly associated with survival, and hence flexibility in selecting URDs based on other characteristics is justified. These data support a simplified URD selection process and have significant implications for URD registries.
Subject(s)
Donor Selection , Hematopoietic Stem Cell Transplantation/mortality , Unrelated Donors , Adult , Age Factors , Female , Histocompatibility , Humans , Male , Prognosis , Survival Analysis , Survival RateABSTRACT
NK cells recognize self-HLA via killer Ig-like receptors (KIR). Homeostatic HLA expression signals for inhibition via KIR, and downregulation of HLA, a common consequence of viral infection, allows NK activation. Like HLA, KIR are highly polymorphic, and allele combinations of the most diverse receptor-ligand pair, KIR3DL1 and HLA-B, correspond to hierarchical HIV control. We used primary cells from healthy human donors to demonstrate how subtype combinations of KIR3DL1 and HLA-B calibrate NK education and their consequent capacity to eliminate HIV-infected cells. High-density KIR3DL1 and Bw4-80I partnerships endow NK cells with the greatest reactivity against HLA-negative targets; NK cells exhibiting the remaining KIR3DL1/HLA-Bw4 combinations demonstrate intermediate responsiveness; and Bw4-negative KIR3DL1(+) NK cells are poorly responsive. Cytotoxicity against HIV-infected autologous CD4(+) T cells strikingly correlated with reactivity to HLA-negative targets. These findings suggest that the programming of NK effector function results from defined features of receptor and ligand subtypes. KIR3DL1 and HLA-B subtypes exhibit an array of binding strengths. Like KIR3DL1, subtypes of HLA-Bw4 are expressed at distinct, predictable membrane densities. Combinatorial permutations of common receptor and ligand subtypes reveal binding strength, receptor density, and ligand density to be functionally important. These findings have immediate implications for prognosis in patients with HIV infection. Furthermore, they demonstrate how features of KIR and HLA modified by allelic variation calibrate NK cell reactive potential.
Subject(s)
HIV-1/immunology , HLA-B Antigens/immunology , Killer Cells, Natural/immunology , Lymphocyte Activation/immunology , Receptors, KIR3DL1/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , Cells, Cultured , HIV Infections/immunology , HIV Infections/virology , HumansABSTRACT
Disparities in survival after allogeneic hematopoietic cell transplantation have been reported for some race and ethnic groups, despite comparable HLA matching. Individuals' ethnic and race groups, as reported through self-identification, can change over time because of multiple sociological factors. We studied the effect of 2 measures of genetic similarity in 1378 recipients who underwent myeloablative first allogeneic hematopoietic cell transplantation between 1995 and 2011 and their unrelated 10 of 10 HLA-A, -B, -C, -DRB1, and-DQB1- matched donors. The studied factors were as follows (1) donor and recipient genetic ancestral admixture and (2) pairwise donor/recipient genetic distance. Increased African genetic admixture for either transplant recipients or donors was associated with increased risk of overall mortality (hazard ratio [HR], 2.26; P = .005 and HR, 3.09; P = .0002, respectively) and transplant-related mortality (HR, 3.3; P = .0003 and HR, 3.86; P = .0001, respectively) and decreased disease-free survival (HR, 1.9; P = .02 and HR, 2.46; P = .002 respectively). The observed effect, albeit statistically significant, was relevant to a small subset of the studied population and was notably correlated with self-reported African-American race. We were not able to control for other nongenetic factors, such as access to health care or other socioeconomic factors; however, the results suggest the influence of a genetic driver. Our findings confirm what has been previously reported for African-American recipients and show similar results for donors. No significant association was found with donor/recipient genetic distance.
Subject(s)
Genetic Variation , Healthcare Disparities/ethnology , Hematopoietic Stem Cell Transplantation/ethnology , Unrelated Donors , Adult , Female , Hematopoietic Stem Cell Transplantation/mortality , Humans , Male , Middle Aged , Transplantation, Homologous , Treatment Outcome , Young AdultABSTRACT
We sought to develop a myeloablative chemotherapeutic regimen to secure consistent engraftment of T-cell depleted (TCD) hematopoietic stem cell transplantations (HSCT) without the need for total body irradiation, thereby reducing toxicity while maintaining low rates of graft-versus-host disease (GVHD) and without increasing relapse. We investigated the myeloablative combination of busulfan (Bu) and melphalan (Mel), with the immunosuppressive agents fludarabine (Flu) and rabbit antithymocyte globulin (r-ATG) as cytoreduction before a TCD HSCT. No post-transplantation immunosuppression was administered. Between April 2001 and May 2008, 102 patients (median age, 55 years) with a diagnosis of primary or secondary myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML) underwent cytoreduction with Bu/Mel/Flu, followed by TCD grafts. TCD was accomplished by CD34+-selection followed by E-rosette depletion for peripheral blood stem cell grafts and, for bone marrow grafts, by soybean agglutination followed by E-rosette depletion. Donors included matched and mismatched, related and unrelated donors. Risk stratification was by American Society for Blood and Marrow Transplantation risk categorization for patients with primary disease. For patients with secondary/treatment-related MDS/AML, those in complete remission (CR) 1 or with refractory anemia were classified as intermediate risk, and all other patients were considered high risk. Neutrophil engraftment occurred at a median of 11 days in 100 of 101 evaluable patients. The cumulative incidences of grades II to IV acute and chronic GVHD at 1 year were 8.8% and 5.9%, respectively. Overall- and disease-free survival (DFS) rates at 5 years were 50.0% and 46.1%, respectively, and the cumulative incidences of relapse and treatment-related mortality were 23.5% and 28.4%, respectively. Stratification by risk group demonstrated superior DFS for low-risk patients (61.5% at 5 years) compared with intermediate- or high-risk (34.2% and 40.0%, respectively, P = .021). For patients with AML, those in CR1 had superior 5-year DFS compared with those in ≥CR2 (60% and 30.6%, respectively, P = .01), without a significant difference in incidence of relapse (17.1% and 30.6%, respectively, P = .209). There were no differences in DFS for other patient, donor, or disease characteristics. In summary, cytoreduction with Bu/Mel/Flu and r-ATG secured consistent engraftment of TCD transplantations. The incidences of acute/chronic GVHD and disease relapse were low, with favorable outcomes in this patient population with high-risk myeloid malignancies.
Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Hematopoietic Stem Cell Transplantation/methods , Leukemia, Myeloid, Acute/therapy , Lymphocyte Depletion , Myelodysplastic Syndromes/therapy , Adolescent , Adult , Aged , Animals , Antilymphocyte Serum/administration & dosage , Busulfan/administration & dosage , Child , Child, Preschool , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation/mortality , Humans , Infant , Leukemia, Myeloid, Acute/mortality , Lymphocyte Depletion/mortality , Melphalan/administration & dosage , Middle Aged , Myelodysplastic Syndromes/mortality , Rabbits , Risk Assessment , Survival Analysis , Transplantation, Homologous , Treatment Outcome , Vidarabine/administration & dosage , Vidarabine/analogs & derivatives , Young AdultABSTRACT
KIR3DL1 is a polymorphic inhibitory receptor that modulates NK cell activity through interacting with HLA-A and HLA-B alleles that carry the Bw4 epitope. Amino acid polymorphisms throughout KIR3DL1 impact receptor surface expression and affinity for HLA. KIR3DL1/S1 encodes inhibitory and activating alleles, but despite high homology with KIR3DL1, the activating receptor KIR3DS1 does not bind the same ligand. Allele KIR3DL1*009 resulted from a gene recombination event between the inhibitory receptor allele KIR3DL1*001 and the activating receptor allele KIR3DS1*013. This study analyzed the functional impact of KIR3DS1-specific polymorphisms on KIR3DL1*009 surface expression, binding to HLA, and functional capacity. Flow-cytometric analysis of primary human NK cells as well as transfected HEK293T cells shows that KIR3DL1*009 is expressed at a significantly lower surface density compared with KIR3DL1*001. Using recombinant proteins of KIR3DL1*001, KIR3DL1*009, and KIR3DS1*013 to analyze binding to HLA, we found that although KIR3DL1*009 displayed some evidence of binding to HLA compared with KIR3DS1*013, the binding was minimal compared with KIR3DL1*001 and KIR3DL1*005. Mutagenesis of polymorphic sites revealed that the surface phenotype and reduced binding of KIR3DL1*009 are caused by the combined amino acid polymorphisms at positions 58 and 92 within the D0 extracellular domain. Resulting from these effects, KIR3DL1*009(+) NK cells exhibited significantly less inhibition by HLA-Bw4(+) target cells compared with KIR3DL1*001(+) NK cells. The data from this study contribute novel insight into how KIR3DS1-specific polymorphisms in the extracellular region impact KIR3DL1 surface expression, ligand binding, and inhibitory function.
Subject(s)
HLA-A Antigens/immunology , HLA-B Antigens/immunology , Killer Cells, Natural/immunology , Receptors, KIR3DL1/genetics , Receptors, KIR3DS1/genetics , Amino Acid Sequence , Cell Line , HEK293 Cells , HLA-A Antigens/genetics , HLA-B Antigens/genetics , Humans , Polymorphism, Single Nucleotide/genetics , Protein Binding/genetics , Protein Binding/immunology , Receptors, KIR3DL1/biosynthesisABSTRACT
We conducted a phase 2 study to determine the efficacy of HLA-haploidentical related donor natural killer (NK) cells after cyclophosphamide-based lymphodepletion in patients with relapsed or progressive acute myelogenous leukemia (AML) or myelodysplastic syndrome (MDS) following allogeneic hematopoietic cell transplantation (HCT). Eight patients (2 with MDS and 6 with AML) were treated with cyclophosphamide 50 mg/kg on day -3 and day -2 before infusion of NK cells isolated from a haploidentical related donor. One patient also received fludarabine 25 mg/m2/day for 4 days. Six doses of 1 million units of interleukin-2 (IL-2) were administered on alternating days beginning on day -1. The median number of NK cells infused was 10.6 × 10(6)/kg (range, 4.3 to 22.4 × 10(6)/kg), and the median number of CD3 cells infused was 2.1 × 10(3)/kg (range, 1.9 to 40 × 10(3)/kg). NK infusions were well tolerated, with a median time to neutrophil recovery of 19 days (range, 7 days to not achieved) and no incidence of graft-versus-host disease after NK infusion. One patient with AML and 1 patient with MDS achieved a complete response, but relapsed at 1.7 and 1.8 months, respectively. One patient with MDS experienced resolution of dysplastic features but persistence of clonal karyotype abnormalities; this patient was stable at 65 months after NK cell therapy. The median duration of survival was 12.9 months (range, 0.8 to 65.3 months). Chimerism analysis of CD3(-)/CD56(+) peripheral blood cells did not detect any circulating haploidentical NK cells after infusion. NK phenotyping was performed in 7 patients during and after IL-2 infusion. We found a slight trend toward greater expression of KIR2DL2/2DL3/2DS2 (5% versus 28%; P = .03) at 14 days in patients who survived longer than 6 months from NK cell infusion (n = 4) compared with those who died within 6 months of NK cell therapy (n = 3). In summary, our data support the safety of haploidentical NK cell infusion after allogeneic HCT.
Subject(s)
Hematopoietic Stem Cell Transplantation , Killer Cells, Natural/transplantation , Leukemia, Myeloid, Acute/therapy , Myelodysplastic Syndromes/therapy , Transplantation Conditioning/methods , Adult , Busulfan/therapeutic use , Child , Child, Preschool , Cyclophosphamide/therapeutic use , Female , Gene Expression , Graft vs Host Disease/immunology , Graft vs Host Disease/mortality , Graft vs Host Disease/pathology , Graft vs Host Disease/prevention & control , Haplotypes , Humans , Immunosuppressive Agents/therapeutic use , Infant , Interleukin-2/therapeutic use , Killer Cells, Natural/immunology , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/mortality , Leukemia, Myeloid, Acute/pathology , Male , Middle Aged , Myeloablative Agonists/therapeutic use , Myelodysplastic Syndromes/immunology , Myelodysplastic Syndromes/mortality , Myelodysplastic Syndromes/pathology , Receptors, Natural Killer Cell/genetics , Receptors, Natural Killer Cell/immunology , Recurrence , Sialic Acid Binding Ig-like Lectin 3/genetics , Sialic Acid Binding Ig-like Lectin 3/immunology , Siblings , Survival Analysis , Transplantation, HomologousABSTRACT
BACKGROUND: Of the cancers treated with allogeneic hematopoietic stem-cell transplantation (HSCT), acute myeloid leukemia (AML) is most sensitive to natural killer (NK)-cell reactivity. The activating killer-cell immunoglobulin-like receptor (KIR) 2DS1 has ligand specificity for HLA-C2 antigens and activates NK cells in an HLA-dependent manner. Donor-derived NK reactivity controlled by KIR2DS1 and HLA could have beneficial effects in patients with AML who undergo allogeneic HSCT. METHODS: We assessed clinical data, HLA genotyping results, and donor cell lines or genomic DNA for 1277 patients with AML who had received hematopoietic stem-cell transplants from unrelated donors matched for HLA-A, B, C, DR, and DQ or with a single mismatch. We performed donor KIR genotyping and evaluated the clinical effect of donor KIR genotype and donor and recipient HLA genotypes. RESULTS: Patients with AML who received allografts from donors who were positive for KIR2DS1 had a lower rate of relapse than those with allografts from donors who were negative for KIR2DS1 (26.5% vs. 32.5%; hazard ratio, 0.76; 95% confidence interval [CI], 0.61 to 0.96; P=0.02). Of allografts from donors with KIR2DS1, those from donors who were homozygous or heterozygous for HLA-C1 antigens could mediate this antileukemic effect, whereas those from donors who were homozygous for HLA-C2 did not provide any advantage (24.9% with homozygosity or heterozygosity for HLA-C1 vs. 37.3% with homozygosity for HLA-C2; hazard ratio, 0.46; 95% CI, 0.28 to 0.75; P=0.002). Recipients of KIR2DS1-positive allografts mismatched for a single HLA-C locus had a lower relapse rate than recipients of KIR2DS1-negative allografts with a mismatch at the same locus (17.1% vs. 35.6%; hazard ratio, 0.40; 95% CI, 0.20 to 0.78; P=0.007). KIR3DS1, in positive genetic linkage disequilibrium with KIR2DS1, had no effect on leukemia relapse but was associated with decreased mortality (60.1%, vs. 66.9% without KIR3DS1; hazard ratio, 0.83; 95% CI, 0.71 to 0.96; P=0.01). CONCLUSIONS: Activating KIR genes from donors were associated with distinct outcomes of allogeneic HSCT for AML. Donor KIR2DS1 appeared to provide protection against relapse in an HLA-C-dependent manner, and donor KIR3DS1 was associated with reduced mortality. (Funded by the National Institutes of Health and others.).