Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Brain ; 146(6): 2612-2626, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36385662

ABSTRACT

Autism spectrum disorders caused by both genetic and environmental factors are strongly male-biased neuropsychiatric conditions. However, the mechanism underlying the sex bias of autism spectrum disorders remains elusive. Here, we use a mouse model in which the autism-linked gene Cttnbp2 is mutated to explore the potential mechanism underlying the autism sex bias. Autism-like features of Cttnbp2 mutant mice were assessed via behavioural assays. C-FOS staining identified sex-biased brain regions critical to social interaction, with their roles and connectivity then validated by chemogenetic manipulation. Proteomic and bioinformatic analyses established sex-biased molecular deficits at synapses, prompting our hypothesis that male-biased nutrient demand magnifies Cttnbp2 deficiency. Accordingly, intakes of branched-chain amino acids (BCAA) and zinc were experimentally altered to assess their effect on autism-like behaviours. Both deletion and autism-linked mutation of Cttnbp2 result in male-biased social deficits. Seven brain regions, including the infralimbic area of the medial prefrontal cortex (ILA), exhibit reduced neural activity in male mutant mice but not in females upon social stimulation. ILA activation by chemogenetic manipulation is sufficient to activate four of those brain regions susceptible to Cttnbp2 deficiency and consequently to ameliorate social deficits in male mice, implying an ILA-regulated neural circuit is critical to male-biased social deficits. Proteomics analysis reveals male-specific downregulated proteins (including SHANK2 and PSD-95, two synaptic zinc-binding proteins) and female-specific upregulated proteins (including RRAGC) linked to neuropsychiatric disorders, which are likely relevant to male-biased deficits and a female protective effect observed in Cttnbp2 mutant mice. Notably, RRAGC is an upstream regulator of mTOR that senses BCAA, suggesting that mTOR exerts a beneficial effect on females. Indeed, increased BCAA intake activates the mTOR pathway and rescues neuronal responses and social behaviours of male Cttnbp2 mutant mice. Moreover, mutant males exhibit greatly increased zinc demand to display normal social behaviours. Mice carrying an autism-linked Cttnbp2 mutation exhibit male-biased social deficits linked to specific brain regions, differential synaptic proteomes and higher demand for BCAA and zinc. We postulate that lower demand for zinc and BCAA are relevant to the female protective effect. Our study reveals a mechanism underlying sex-biased social defects and also suggests a potential therapeutic approach for autism spectrum disorders.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Mice , Male , Female , Animals , Autistic Disorder/genetics , Proteomics , Sexism , Autism Spectrum Disorder/genetics , TOR Serine-Threonine Kinases , Nutrients , Zinc , Disease Models, Animal , Nerve Tissue Proteins/genetics , Microfilament Proteins
2.
Cereb Cortex ; 26(6): 2715-27, 2016 06.
Article in English | MEDLINE | ID: mdl-26045570

ABSTRACT

Gamma-aminobutyric acidergic (GABAergic) interneurons (INs) in the dentate gyrus (DG) provide inhibitory control to granule cell (GC) activity and thus gate incoming signals to the hippocampus. However, how various IN subtypes inhibit GCs in response to different excitatory input pathways remains mostly unknown. By using electrophysiology and optogenetics, we investigated neurotransmission of the hilar commissural pathway (COM) and the medial perforant path (MPP) to the DG in acutely prepared mouse slices. We found that the short-term dynamics of excitatory COM-GC and MPP-GC synapses was similar, but that the dynamics of COM- and MPP-mediated inhibition measured in GCs was remarkably different, during theta-frequency stimulation. This resulted in the increased inhibition-excitation (I/E) ratios in single GCs for COM stimulation, but decreased I/E ratios for MPP stimulation. Further analysis of pathway-specific responses in identified INs revealed that basket cell-like INs, total molecular layer- and molecular layer-like cells, received greater excitation and were more reliably recruited by the COM than by the MPP inputs. In contrast, hilar perforant path-associated and hilar commissural-associational pathway-related-like cells were minimally activated by both inputs. These results demonstrate that distinct IN subtypes are preferentially recruited by different inputs to the DG, and reveal their relative contributions in COM-mediated feedforward inhibition.


Subject(s)
Dentate Gyrus/physiology , Interneurons/physiology , Perforant Pathway/physiology , Animals , Excitatory Postsynaptic Potentials/physiology , Female , Immunohistochemistry , Inhibitory Postsynaptic Potentials/physiology , Male , Mice, Inbred C57BL , Mice, Transgenic , Neural Inhibition/physiology , Optogenetics , Patch-Clamp Techniques , Receptors, Kainic Acid/genetics , Receptors, Kainic Acid/metabolism , Rhodopsin/genetics , Rhodopsin/metabolism , Tissue Culture Techniques
3.
J Neurosci ; 33(5): 1828-32, 2013 Jan 30.
Article in English | MEDLINE | ID: mdl-23365222

ABSTRACT

Acid-sensing ion channel-1a (ASIC1a) is localized in brain regions with high synaptic density and is thought to contribute to synaptic plasticity, learning, and memory. A prominent hypothesis is that activation of postsynaptic ASICs promotes depolarization, thereby augmenting N-methyl-d-aspartate receptor function and contributing to the induction of long-term potentiation (LTP). However, evidence for activation of postsynaptic ASICs during neurotransmission has not been established. Here, we re-examined the role of ASIC1a in LTP in the hippocampus using pharmacological and genetic approaches. Our results showed that a tarantula peptide psalmotoxin, which profoundly blocked ASIC currents in the hippocampal neurons, had no effect on LTP. Similarly, normal LTP was robustly generated in ASIC1a-null mice. A further behavioral analysis showed that mice lacking ASIC1a had normal performance in hippocampus-dependent spatial memory. In summary, our results indicate that ASIC1a is not required for hippocampal LTP and spatial memory. We therefore propose that the role of ASIC1a in LTP and spatial learning should be reassessed.


Subject(s)
Acid Sensing Ion Channel Blockers/pharmacology , Acid Sensing Ion Channels/metabolism , Hippocampus/physiology , Long-Term Potentiation/physiology , Maze Learning/physiology , Acid Sensing Ion Channels/genetics , Animals , Female , Hippocampus/drug effects , Long-Term Potentiation/drug effects , Male , Maze Learning/drug effects , Mice , Mice, Knockout , Neuronal Plasticity/drug effects , Neuronal Plasticity/physiology , Neurons/drug effects , Neurons/metabolism , Rats , Rats, Sprague-Dawley
4.
Article in English | MEDLINE | ID: mdl-22269107

ABSTRACT

Crustacean hyperglycemic hormone (CHH) was originally identified in a neuroendocrine system-the X-organ/sinus gland complex. In this study, a cDNA (Prc-CHH) encoding CHH precursor was cloned from the hemocyte of the crayfish Procambarus clarkii. Analysis of tissues by a CHH-specific enzyme-linked immunosorbent assay (ELISA) confirmed the presence of CHH in hemocytes, the levels of which were much lower than those in the sinus gland, but 2 to 10 times higher than those in the thoracic and cerebral ganglia. Total hemocytes were separated by density gradient centrifugation into layers of hyaline cell (HC), semi-granular cell (SGC), and granular cell (GC). Analysis of extracts of each layer using ELISA revealed that CHH is present in GCs (202.8±86.7 fmol/mg protein) and SGCs (497.8±49.4 fmol/mg protein), but not in HCs. Finally, CHH stimulated the membrane-bound guanylyl cyclase (GC) activity of hemocytes in a dose-dependent manner. These data for the first time confirm that a crustacean neuropeptide-encoding gene is expressed in cells essential for immunity and its expression in hemocytes is cell type-specific. Effect of CHH on the membrane-bound GC activity of hemocyte suggests that hemocyte is a target site of CHH. Possible functions of the hemocyte-derived CHH are discussed.


Subject(s)
Arthropod Proteins/metabolism , Astacoidea/metabolism , Hemocytes/metabolism , Invertebrate Hormones/metabolism , Nerve Tissue Proteins/metabolism , Neuropeptides/metabolism , Protein Precursors/metabolism , Amino Acid Sequence , Animals , Arthropod Proteins/genetics , Astacoidea/genetics , Centrifugation, Density Gradient , Cloning, Molecular , Enzyme Activation , Enzyme-Linked Immunosorbent Assay , Female , Guanylate Cyclase/metabolism , Invertebrate Hormones/genetics , Male , Molecular Sequence Data , Nerve Tissue Proteins/genetics , Neuropeptides/genetics , Protein Precursors/genetics
5.
Eur J Neurosci ; 32(5): 725-35, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20673311

ABSTRACT

Astrocytes function as spatial K(+) buffers by expressing a rich repertoire of K(+) channels. Earlier studies suggest that acid-sensitive tandem-pore K(+) channels, mainly TWIK-related acid-sensitive K(+) (TASK) channels, mediate part of the passive astroglial membrane conductance. Here, using a combination of electrophysiology and pharmacology, we investigated the presence of TASK-like conductance in hippocampal astrocytes of rat brain slices. Extracellular pH shifts to below 7.4 (or above 7.4) induced a prominent inward (or outward) current in astrocytes in the presence of tetrodotoxin, a Na(+) channel blocker, and 4,4'-diisothiocyanatostilbene-2,2'-disulfonate, a co-transporter blocker. The pH-sensitive current was insensitive to quinine, a potent blocker of tandem-pore K(+) channels including TWIK-1 and TREK-1 channels. Voltage-clamp analysis revealed that the pH-sensitive current exhibited weak outward rectification with a reversal potential of -112 mV, close to the Nernst equilibrium potential for K(+) . Furthermore, the current-voltage relationship was well fitted with the Goldman-Hodgkin-Katz current equation for the classical open-rectifier 'leak' K(+) channel. The pH-sensitive K(+) current was potentiated by TASK channel modulators such as the volatile anesthetic isoflurane but depressed by the local anesthetic bupivacaine. However, unlike TASK channels, the pH-sensitive current was insensitive to Ba(2+) and quinine. Thus, the molecular identity of the pH-sensitive leak K(+) channel is unlikely to be attributable to TASK channels. Taken together, our results suggest a novel yet unknown leak K(+) channel underlying the pH- and anesthetic-sensitive background conductance in hippocampal astrocytes.


Subject(s)
Astrocytes/physiology , Hippocampus/physiology , Potassium Channels, Tandem Pore Domain/physiology , 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid/analogs & derivatives , 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid/pharmacology , Animals , Barium/pharmacology , Bupivacaine/pharmacology , Hippocampus/drug effects , Hydrogen-Ion Concentration , Isoflurane/pharmacology , Male , Membrane Potentials/drug effects , Membrane Potentials/physiology , Nerve Tissue Proteins , Patch-Clamp Techniques/methods , Potassium Channels, Tandem Pore Domain/antagonists & inhibitors , Quinine/pharmacology , Rats , Rats, Sprague-Dawley , Tetrodotoxin/pharmacology
6.
Front Mol Neurosci ; 13: 47, 2020.
Article in English | MEDLINE | ID: mdl-32296306

ABSTRACT

The two hemispheres of the vertebrate brain are connected through several commissures. Although the anterior commissure (AC) is the most conserved white matter structure in the brains of different vertebrates, its complete physiological functionality remains elusive. Since the AC is involved in the connection between two amygdalae and because amygdalae are critical for emotional behaviors and social interaction, we assessed amygdalar activity and function to investigate the physiological role of the AC. We first performed ex vivo electrophysiological recording on mouse brains to demonstrate that the AC delivers a positive signal to facilitate synaptic responses and to recruit basolateral amygdalar neurons via glutamatergic synapses. Transection was then undertaken to investigate the role of the AC in vivo. Results from in vivo optogenetic stimulation suggest that AC transection impairs mutual activation between two basolateral amygdalae. Behavioral analyses were then used to assess if AC surgical lesioning results in hyperactivity, anxiety, social reduction or learning/memory impairment, which are behavioral features associated with neuropsychiatric disorders, such as autism spectrum disorders. We found that AC transection results in higher locomotor activity, aberrant social interaction and reduced associative memory, but not anxiety. Moreover, systemic administration of D-cycloserine, a coagonist of N-methyl-D-aspartate receptor, ameliorated auditory fear memory in AC-transected mice, reinforcing our evidence that the AC potentiates the activity of basolateral amygdalae. Our study suggests that the AC regulates basolateral amygdalar activity and influences neuropsychiatry-related behaviors in mice.

7.
Cell Rep ; 29(1): 34-48.e4, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31577954

ABSTRACT

Impaired interhemispheric connectivity is commonly found in various psychiatric disorders, although how interhemispheric connectivity regulates brain function remains elusive. Here, we use the mouse amygdala, a brain region that is critical for social interaction and fear memory, as a model to demonstrate that contralateral connectivity intensifies the synaptic response of basolateral amygdalae (BLA) and regulates amygdala-dependent behaviors. Retrograde tracing and c-FOS expression indicate that contralateral afferents widely innervate BLA non-randomly and that some BLA neurons innervate both contralateral BLA and the ipsilateral central amygdala (CeA). Our optogenetic and electrophysiological studies further suggest that contralateral BLA input results in the synaptic facilitation of BLA neurons, thereby intensifying the responses to cortical and thalamic stimulations. Finally, pharmacological inhibition and chemogenetic disconnection demonstrate that BLA contralateral facilitation is required for social interaction and memory. Our study suggests that interhemispheric connectivity potentiates the synaptic dynamics of BLA neurons and is critical for the full activation and functionality of amygdalae.


Subject(s)
Action Potentials/physiology , Basolateral Nuclear Complex/physiology , Memory/physiology , Animals , Basolateral Nuclear Complex/metabolism , Fear/physiology , Interpersonal Relations , Male , Mice , Mice, Inbred C57BL , Neurons/metabolism , Neurons/physiology , Optogenetics/methods , Proto-Oncogene Proteins c-fos/metabolism , Synapses/metabolism , Thalamus/metabolism , Thalamus/physiology
8.
J Cell Biochem ; 104(2): 554-67, 2008 May 15.
Article in English | MEDLINE | ID: mdl-18072286

ABSTRACT

A physiological concentration of extracellular ATP stimulated biphasic Ca(2+) signal, and the Ca(2+) transient was decreased and the Ca(2+) sustain was eliminated immediately after removal of ATP and Ca(2+) in RBA-2 astrocytes. Reintroduction of Ca(2+) induced Ca(2+) sustain. Stimulation of P2Y(1) receptors with 2-methylthioadenosine 5'-diphosphate (2MeSADP) also induced a biphasic Ca(2+) signaling and the Ca(2+) sustains were eliminated using Ca(2+)-free buffer. The 2MeSADP-mediated biphasic Ca(2+) signals were inhibited by phospholipase C (PLC) inhibitor U73122, and completely blocked by P2Y(1) selective antagonist MRS2179 and protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) whereas enhanced by PKC inhibitors GF109203X and Go6979. Inhibition of capacitative Ca(2+) entry (CCE) decreased the Ca(2+)-induced Ca(2+) entry; nevertheless, ATP further enhanced the Ca(2+)-induced Ca(2+) entry in the intracellular Ca(2+) store-emptied and CCE-inhibited cells indicating that ATP stimulated Ca(2+) entry via CCE and ionotropic P2X receptors. Furthermore, the 2MeSADP-induced Ca(2+) sustain was eliminated by apyrase but potentiated by P2X(4) allosteric effector ivermectin (IVM). The agonist ADPbetaS stimulated a lesser P2Y(1)-mediated Ca(2+) signal and caused a two-fold increase in ATP release but that were not affected by IVM whereas inhibited by PMA, PLC inhibitor ET-18-OCH(3) and phospholipase D (PLD) inhibitor D609, and enhanced by removal of intra- or extracellular Ca(2+). Taken together, the P2Y(1)-mediated Ca(2+) sustain was at least in part via P2X receptors activated by the P2Y(1)-induced ATP release, and PKC played a pivotal role in desensitization of P2Y(1) receptors in RBA-2 astrocytes.


Subject(s)
Astrocytes/metabolism , Calcium Signaling , Receptors, Purinergic P2/physiology , Adenosine Triphosphate/metabolism , Animals , Calcium/metabolism , Cell Line , Protein Kinase C , Rats , Receptors, Purinergic P2X , Receptors, Purinergic P2Y1
9.
Nat Commun ; 7: 13770, 2016 12 07.
Article in English | MEDLINE | ID: mdl-27924869

ABSTRACT

Acid-sensing ion channel 1a (ASIC1a) has been shown to play important roles in synaptic plasticity, learning and memory. Here we identify a crucial role for ASIC1a in long-term depression (LTD) at mouse insular synapses. Genetic ablation and pharmacological inhibition of ASIC1a reduced the induction probability of LTD without affecting that of long-term potentiation in the insular cortex. The disruption of ASIC1a also attenuated the extinction of established taste aversion memory without altering the initial associative taste learning or its long-term retention. Extinction of taste aversive memory led to the reduced insular synaptic efficacy, which precluded further LTD induction. The impaired LTD and extinction learning in ASIC1a null mice were restored by virus-mediated expression of wild-type ASIC1a, but not its ion-impermeable mutant, in the insular cortices. Our data demonstrate the involvement of an ASIC1a-mediated insular synaptic depression mechanism in extinction learning, which raises the possibility of targeting ASIC1a to manage adaptive behaviours.


Subject(s)
Acid Sensing Ion Channels/metabolism , Cerebral Cortex/metabolism , Conditioning, Classical , Extinction, Psychological , Long-Term Potentiation , Taste/physiology , Acid Sensing Ion Channels/deficiency , Amino Acid Sequence , Animals , Avoidance Learning/drug effects , Cerebral Cortex/drug effects , Conditioning, Classical/drug effects , Electric Stimulation , Extinction, Psychological/drug effects , Glutamates/metabolism , Glycine/analogs & derivatives , Glycine/pharmacology , Glycogen Synthase Kinase 3 beta/metabolism , Long-Term Potentiation/drug effects , Male , Memory/drug effects , Mice, Inbred C57BL , Peptides/chemistry , Resorcinols/pharmacology , Signal Transduction/drug effects , Synaptic Transmission/drug effects , Taste/drug effects
11.
Cell Signal ; 21(6): 881-91, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19385050

ABSTRACT

Neuro-2a (N2a) cells are derived from spontaneous neuroblastoma of mouse and capable to differentiate into neuronal-like cells. Recently, P2X7 receptor has been shown to sustain growth of human neuroblastoma cells but its role during neuronal differentiation remains unexamined.We characterized the role of P2X7 receptors in the retinoic acid (RA)-differentiated N2a cells. RA induced N2a cells differentiation into neurite bearing and neuronal specific proteins, microtubule-associated protein 2 (MAP2) and neuronal specific nuclear protein (NeuN), expressing neuronal-like cells. Interestingly, the RA-induced neuronal differentiation was associated with decreases in the expression and function of P2X7 receptors. Functional inhibition of P2X7 receptors by P2X7 receptor selective antagonists, 5'-triphosphate, periodate-oxidized 2',3'-dialdehyde ATP (oATP), brilliant blue G (BBG) or A438079 induced neurite outgrowth. In addition, RA and oATP treatment stimulated the expression of neuron-specific class III beta-tubulin (TuJ1), and knockdown of P2X7 receptor expression by siRNA induced neurite outgrowth. To elucidate the possible mechanism, we found the levels of basal intracellular Ca2+ concentrations ([Ca2+]i) were decreased in either RA- or oATP-differentiated or P2X7receptor knockdown N2a cells. Simply cultured N2a cells in low Ca2+ medium induced a 2-fold increase in neurite length. Treatment of N2a cells with ATP hydrolase apyrase and the P2X7 receptors selective antagonist oATP or BBG decreased cell viability and cell number. Nevertheless, oATP but not BBG decreased cell proliferation and cell cycle progression. These results suggest for the first time that decreases in expression/function of P2X7 receptors are involved in neuronal differentiation.We provide additional evidence shown that the ATP release-activated P2X7 receptor is important in maintaining cell survival of N2a neuroblastoma cells.


Subject(s)
Cell Differentiation/drug effects , Neuroblastoma/metabolism , Neuroblastoma/pathology , Neurons/cytology , Neurons/drug effects , Receptors, Purinergic P2/metabolism , Tretinoin/pharmacology , Adenosine Triphosphate/analogs & derivatives , Adenosine Triphosphate/pharmacology , Animals , Calcium Signaling/drug effects , Cell Cycle/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Gene Knockdown Techniques , Mice , Neurites/drug effects , Neurites/metabolism , Purinergic P2 Receptor Antagonists , RNA, Small Interfering/metabolism , Receptors, Purinergic P2X7
SELECTION OF CITATIONS
SEARCH DETAIL